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Many of our actions require visual information, and for this it is important to direct the eyes to the
right place at the right time. Two or three times every second, we must decide both when and where
to direct our gaze. Understanding these decisions can reveal the moment-to-moment information
priorities of the visual system and the strategies for information sampling employed by the brain to
serve ongoing behavior. Most theoretical frameworks and models of gaze control assume that the
spatial and temporal aspects of fixation point selection depend on different mechanisms. We present
a single model that can simultaneously account for both when and where we look. Underpinning this
model is the theoretical assertion that each decision to move the eyes is an evaluation of the relative
benefit expected from moving the eyes to a new location compared with that expected by continuing
to fixate the current target. The eyes move when the evidence that favors moving to a new location
outweighs that favoring staying at the present location. Our model provides not only an account of
when the eyes move, but also what will be fixated. That is, an analysis of saccade timing alone
enables us to predict where people look in a scene. Indeed our model accounts for fixation selection
as well as (and often better than) current computational models of fixation selection in scene
viewing.

Keywords: decision making, eye movements, fixation duration, fixation selection, scene viewing

Much that we do requires visual information. However, the
manner in which our eyes sample the environment greatly limits
the information that is available to us: the small window of clear
vision at the center of gaze can only be directed to three locations
or so in the environment each second. The valuable resource of
high quality vision must therefore be allocated with care to provide
the right information at the right time. Thus, understanding the
mechanisms that underlie fixation allocation in space and time can
tell us about the moment-to-moment information priorities of the
visual system and the strategies for information sampling em-
ployed by the brain to serve ongoing behavior. A complete under-
standing of eye movement behavior must therefore encompass

what determines both when and where we look. To date, attempts
to decode the mechanisms underlying the temporal and spatial
aspects of gaze control have remained separate in the literature. In
this paper, we will argue this independence has led to a false
dichotomy and instead offer the novel theoretical argument that a
single decision process determines when our eyes move as well as
where they move.

The logic behind our proposal is straightforward yet entirely
novel. The purpose of saccades is to acquire information about
the outside world, and the outside world is complex, containing
many potential sources of information. Questions regarding
when and where to move the eyes can therefore be thought of
in terms of competition between different potential sources of
information in the environment. We will argue that this com-
petition is resolved via a Bayesian-like process, in which deci-
sion signals that represent the relative expected benefit associ-
ated with different actions race against each other until one of
the decision signals reaches a threshold criterion for making a
choice. Viewed in this way, the decision signal that reaches
threshold first will determine not only the choice of action but
also the time of its occurrence.

A central, and novel, feature of our model is that choices
regarding when and where to move the eyes are made by evalu-
ating the expected benefit of prolonging the current fixation (i.e.,
making a choice to Stay) in relation to the expected benefit of
saccading to another location in the periphery (i.e., making a
choice to Go). We will argue that, in actuality, at any given
moment, and in parallel, the visual system makes a great many
Stay-or-Go evaluations - one for each possible saccade target.
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Which of these Stay-or-Go evaluations is quickest to reach a point
where the evidence in favor of a decision to go sufficiently
outweighs that in favor of a decision to stay will determine when
and where the eyes move next. Under this proposal, then, it should
be possible to use the factors that describe variations in fixation
duration to also predict where the eyes are most likely to be
directed. This, therefore, is our goal.

To meet our goal, we divide our discussion into several parts,
each focusing on a critical phase of our argument. In Part I, we
formally develop the proposal that gaze control can be viewed as
a series of Stay-or-Go decisions and that choices regarding where
we look and when we look there can be construed, both concep-
tually and mathematically, as stemming from a single decision
process. We will then capture this process in a formal model of
gaze control which, for reasons that will become obvious later, we
call LATEST (Linear Approach to Threshold Explaining Space
and Time). In Part II, we focus on the temporal dynamics of
fixations by identifying various factors that modulate fixation
duration and tuning LATEST to model the manner in which they
do so. Then, in Part III we turn our attention to the determination
of fixation points in space. Specifically, we will use our purely
duration-tuned model to additionally predict saccade end points.
Of course, the success of our theoretical argument depends upon
the success of this endeavor, so to evaluate the efficacy of
LATEST, we will compare it with several established models of
spatial selection in scenes that have previously been constructed
without reference to the temporal aspects of gaze. In Part IV we
will focus on particular “special cases” of gaze control behaviors
observed during scene viewing that we will introduce later. Pre-
viewing our final conclusion, in all situations we will show that in
terms of predicting actual behavior, no existing model of fixation
selection performs as well as LATEST, providing strong evidence
that we should no longer adhere to the current zeitgeist in which
temporal and spatial aspects of gaze control are treated indepen-
dently.

Part I: Theoretical Foundations of LATEST

Saccades as Decisions

Before thinking about saccades specifically, it is useful to con-
sider a broader relationship between decision making and reaction
time (RT; after all, saccades are, at their core, reactions that can be
timed). In general, there are two features of RTs that are often
puzzling and that need mechanistic explanation. One is that they
are so long in relation to what would be expected of the underlying
neural processes such as synaptic delay, nerve conduction time,
and so on. The other is that in a series of identical trials using
identical stimuli, a latency whose average is say 200 ms can vary
randomly on different occasions over a range of some 50–100 ms.
This variability is obvious when response time histograms are
plotted (Appendix Figure A1a). Additionally, a positive skewness
is evident in plots of any RT distribution, whether saccadic or
manual, and whether evoked by visual or other kinds of stimuli.
However, if we consider not the RT itself but its reciprocal then the
skewness disappears and we find that the resultant distribution is
not only symmetrical but Gaussian or normal (Appendix Figure
A1b). By considering the reciprocal of RT we effectively consider
the rate at which responses are made and, hence, the implied rate

of the underlying decision process which appears to be Gaussian.
This can best be demonstrated by plotting cumulative histograms
rather than conventional frequency histograms using a probit scale
for probability. The result (called a reciprobit plot) will then be a
straight line if the decision rate is Gaussian (Appendix Figure
A1c–A1d).

Because reciprocal RT (or latency) reflects the rate of the
underlying decision process, a first step in modeling decision
processes is to consider whether we can model this distribution.
The simplest model that will explain this normal distribution of
reciprocal latency is LATER: Linear Approach to Threshold with
Ergodic Rate (Carpenter, 1981; Noorani & Carpenter, 2016). The
basic principles of this approach are illustrated in Figure 1. A
decision signal S rises linearly at a rate r from its initial value of
S0 until it reaches a threshold value ST, at which point the response
is initiated. The variability in RTs that is frequently observed
comes about because the rate, r, by which information is accumu-
lated for evaluating the decision varies from trial to trial with a
normal distribution. This normal distribution of rates of accumu-
lation can be described as having a mean rate of accumulation of
� and variance of �2.

As described, this is of course merely an ad hoc empirical
description; what strengthens the LATER model is that—apart
from the built-in randomness—it also happens to represent the
simplest possible implementation of an elementary quasi-Bayesian
decision mechanism. More formally and generally, we can express
its operation in terms of evidence E, supplied by sensory informa-
tion, being accumulated to support competing hypotheses.

To illustrate, let’s consider a situation in which an observer must
determine if one or the other of a specific object (i.e., target) is
present in a visual display. When looking at a kitchen, for example,
an observer may need to determine whether the object on a counter
is a mug of tea or a bowl of soup. Hypothesis H1 would then be
that a particular target (e.g., a mug of tea) is present and hypothesis

Figure 1. Accumulating evidence for saccadic decisions in LATER.
After an external event, such as the onset of a stimulus or start of a fixation,
the log odds (Q=) will rise linearly as support (log L) for hypothesis H1

relative to H2 accumulates, rising from the starting level, S0, which denotes
prior expectation, with a rate of rise, r. The rate of rise varies from decision
to decision with a mean of � and standard deviation of �. A response (e.g.,
a saccade) is triggered when Q= reaches a criterion threshold, ST, for
accepting hypothesis H1.
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H2 that another target (e.g., a bowl of soup) is present. More
specifically, the likelihood ratio L for the two hypotheses, given
by p�E�H1� ⁄p�E�H2�, is used to update the prior odds, Q�H1, H2� �
p�H1� ⁄p�H2� to give the posterior odds Q=:

Q� � Q . L (1)

To simplify various mathematical aspects of calculating likeli-
hood ratios, Equation 1 can also be expressed in logarithmic form:

log Q� � log Q � log L (2)

where log L is known as the support given to H1 (that a mug of tea
is present) relative to H2 (that a bowl of soup is present) provided
by E (Edwards, 1992). This process continues iteratively over time
with the prior odds at time T being derived from the posterior odds
at time T – 1. If the rate at which information is gathered remains
constant throughout the decision process, the logarithm of the
posterior likelihood will rise linearly. A decision to accept H1 can
be made when the rising log odds reaches a criterion level—at this
point the evidence in support of H1 sufficiently outweighs the
evidence in support of H2, and the observer determines that a mug
of tea is on the counter. In other words, if we are prepared to
identify LATER’s decision signal S with log odds, we can see that
the model provides a simple explanation for RTs that is at the same
time a kind of elementary decision mechanism (Carpenter, 2012;
Noorani & Carpenter, 2011; Carpenter & Williams, 1995; Noorani
& Carpenter, 2016).

It is the linear rise of the decision signal that distinguishes
LATER from other models of accumulating evidence in neural
decision processes (Ratcliff, 2001). This is because it is proposed
that noise from integrating sensory information is unlikely to
contribute significantly to decision times except when that infor-
mation is very hard to gather, for example for visual information
at very low contrast (Carpenter, Reddi, & Anderson, 2009). Con-
versely, under high-contrast conditions, when targets are easily
detected, the random variability of RT to suddenly presented
targets is attributable to a process occurring at the decision stage
rather than as a by-product of integration of sensory noise (Schall
& Thompson, 1999).

Applying LATER to Saccadic Decisions

While providing a framework for decision processes in general,
LATER has been applied successfully to understand saccadic
decision processes in particular, at least under conditions where
observers (sometimes monkeys) generate a single saccade within
discrete trials to a predefined target within a simple visual display.
Predictions based on the assumptions in LATER are borne out
experimentally: Diminished supply of visual information (Reddi,
Asrress, & Carpenter, 2003), reduced expectations (Carpenter &
Williams, 1995), and lessened pressure to respond quickly (Reddi
& Carpenter, 2000) all increase saccade latencies because they,
respectively, slow the rate of rise of the decision signal (r),
diminish starting activation (S0), and increase decision thresholds
(ST) within the model. Reward, or more generally the expected
benefit of making a saccade to a particular location, for example in
terms of how much information its fixation is likely to yield, would
also be expected to contribute to the LATER decision process, and
a number of experiments have demonstrated that this is in fact
observed (Schütz, Trommershäuser, & Gegenfurtner, 2012;

Takikawa, Kawagoe, Itoh, Nakahara, & Hikosaka, 2002; Wa-
tanabe, Lauwereyns, & Hikosaka, 2003).

LATER appears to correspond to aspects of what is known
about the neural architecture of saccade generation. Recordings
from the parietal cortex of monkeys carrying out saccadic deci-
sions have confirmed that the neurons do indeed code for log odds
(Yang & Shadlen, 2007) as would be necessary for a decision
process of the form proposed in LATER. In monkey frontal eye
fields, activity in movement neurons rises steadily prior to saccade
initiation with a rate that varies randomly for each saccade, with
neuronal activation for each saccade reaching a relatively consis-
tent final level (Hanes & Schall, 1996). Comparison of the time-
course of activity in stimulus-related neurons in the same area
shows that this random variation is gratuitously ‘injected’ some-
where between the stimulus- and movement-related neurons,
rather than being a consequence of sensory noise (Thompson,
Bichot, & Schall, 1997; Thompson, Hanes, Bichot, & Schall,
1996). Similar linearly rising signals can be seen at several other
locations during the latent period for the response, notably in the
superior colliculus, where the starting level appears to reflect prior
expectation (Basso & Wurtz, 1998; Krauzlis, Dill, & Kornylo,
2002, Krauzlis, Liston, & Carello, 2004), as LATER would pre-
dict, and in parietal cortex (Lynch, Mountcastle, Talbot, & Yin,
1977; Shadlen & Newsome, 2001; Huk & Shadlen, 2005); these
rising signals are almost certainly the cause of the well-known
Bereitschaftpotentialen or readiness potentials, that can be re-
corded in humans by averaging EEG in synchronization with a
subsequent voluntary response (Kornhuber & Deecke, 1965;
Becker, Hoehne, Iwase, & Kornhuber, 1972). For more discussion
of the neural correlates of LATER see Noorani and Carpenter
(2016).

Despite the evidence reviewed above, there is one feature of
saccadic responses seen in some situations—and, importantly for
the development of our new model, in scene viewing—that cannot
be explained by a single accumulation process in LATER (see
Figure 1). With large data sets, particularly under conditions of
high expectation or urgency, one often sees a small subpopulation
of very short-latency responses that cannot be explained by the
simple LATER model. These responses are infrequent—often less
than 10% of the total responses—but more frequent than would be
expected for a single underlying decision process. These fast
responses form a distinct LATERian population of their own:
when plotted on a reciprobit scale, these early responses lie on a
different straight line that is much shallower than the main distri-
bution and usually extrapolates back to a zero intercept at infinite
time, implying a large value of � and a � of zero (see Figure 2).
They can be explained by a relatively simple model in which two
LATER units operate in parallel, the first of them to reach thresh-
old determining the time of the response. One unit is the sensible
decision unit (�, �) that generates the main part of the distribution;
the other is a kind of maverick unit, which because of the large �
and despite the zero �, just occasionally wins, generating an early
response. The early saccades they generate are a prominent feature
of the latency distributions observed during reading, nystagmus
and scene viewing (Carpenter, 1994; Carpenter & McDonald,
2007; McDonald, Carpenter, & Shillcock, 2005; Roos, Calandrini,
& Carpenter, 2008). Therefore, any model of saccade timing in
scene viewing needs to account for the overrepresentation of very
short duration fixations, and in our decision-based model we
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achieve this by proposing a basic model architecture comprising
two competing decision signals - the sensible (discussed in Parts II
and III) and maverick (discussed in Part IV) decision processes
outlined here and illustrated in Figure 2.

From LATER to LATEST: Modeling Spontaneous
Saccades in Scene Viewing

The experiments that led to successful modeling of the variabil-
ity of saccadic response times, described above, were all based on
evoked responses in discrete trials using simple visual displays.
Because of the constrained circumstances under which LATER
was developed, existing LATER accounts of saccadic decisions
are simply inadequate when one wants to consider real-world
scene viewing. In the real world we are faced with a very different
and less artificial situation than that which LATER was designed
to deal with: the potential targets are there all the time, and there
are a lot of them. Furthermore, LATER describes information
processing and accumulation at peripheral retinal locations, with
no involvement of information processing in central vision. How-
ever, information in central vision is known to modulate fixation
duration in reading (Rayner, 1998) and scene viewing (Henderson,
Weeks Jr, & Hollingworth, 1999; Underwood, Humphreys, &
Cross, 2007). Hence, any framework for understanding saccade
timing during scene viewing should therefore incorporate not only
information processing in peripheral vision but also that within

central vision. This requirement underpins a major conceptual
deviation of our proposed LATEST model from previous LATER
models of saccadic decisions.

We propose a novel form of the decision process that incorpo-
rates peripheral and central visual information processing by con-
sidering the decision as an evaluation of the relative merits of
saccading to a candidate target location in the periphery compared
with maintaining fixation at the target currently being fixated. We
can then reframe the comparison in Equation 2, which pitches
competing hypotheses about the information gathered at a periph-
eral location against each other and has underpinned all previous
LATER models of saccadic decisions, in a new way: as an eval-
uation of the hypothesis that behavioral goals will best be served
by moving the eyes to the candidate location (GO to the new
location) relative to the hypothesis that behavioral goals will best
be served by maintaining fixation (STAY at the current location):

log QT �HGO, HSTAY� � log QT�1 �HGO, HSTAY�

� support �HGO, HSTAY� (3)

This Stay-or-Go form of the underlying decision process offers
a key conceptual departure from previous decision models, and
allows the decision process to be conceptualized in a way that is
more appropriate for complex scenes with many potential targets
for each saccade and the evaluation of evidence at current and
potential fixation locations.

Figure 2. (a) The basic architecture for producing two populations of decision times. Two LATER units race
to threshold—the main unit conducting sensible evaluations of evidence, the early unit providing a highly
variable maverick decision signal—with the winning unit generating a response. (b) Simulated data (N � 8000)
generated by two competing LATER decision units. For the rates of rise parameters were set to � � 4, � � 1
for the main unit and � � 0, � � 5 for the early unit. The histogram shows an overrepresentation of very short
latency simulated responses. (c) The same data as shown in (b), plotted on reciprobit axes. The responses
generated by the early unit are easier to identify in this plot. The data points clearly lie along two straight lines
(plotted in gray), corresponding to the two underlying response generators.
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Within this novel Stay-or-Go theoretical framework, when eval-
uating a decision to move the eyes from the current fixation point
(1) to a possible future location (2), the mean rate of rise of the
decision signal, �, can be decomposed into independent factors,
representing the tendency to stay at the current location �STAY and
the tendency to go to the new target �GO (see Figure 3). �GO can
in turn be decomposed into a component which is a function of the
target location, in particular the visual information (�2) at the
location, and another determined by the retinocentric position of
the target, that is, relative to the current fixation (�12). �STAY on
the other hand can be expected to be a function only of the content
of the current fixation (�1). In Part II of the present paper we
characterize the factors that contribute to �STAY and �GO.

Of course, from any fixation during scene viewing there are
many potential locations for the next saccade to target. If we
assume that the visual system is able to gather information in
parallel across the extent of the visual field, then this phrasing of
the decision has the advantage of allowing multiple Stay-or-Go
decision signals to rise toward threshold simultaneously. Thus, for
each potential peripheral target location a separate Stay-or-Go
decision can be evaluated, with the location at which support for
Go reaches threshold first being the one to which the saccade is
directed (see Figure 3). Not only does this conceptualization of

spontaneous saccade generation in scene viewing allow both in-
formation at fixation and in the periphery to contribute to the
decision processes, but it also makes a strong prediction that
decisions about where and when to move the eyes are intimately
linked.

A race between multiple peripheral Stay-or-Go decisions essen-
tially describes a form of spatial decision map underlying saccade
generation in scene viewing. However, unlike previous such prop-
ositions (e.g., Itti, Koch, & Niebur, 1998; Borji & Itti, 2013), in our
proposal the underlying spatial decision map arises from the tem-
poral dynamics of the decision processes for when to move the
eyes, essentially comprising the rising log odds of the Stay-or-Go
evaluation at each location. If we can model saccade timings in
scene viewing we should therefore be able to use this model to
predict spatial selection as well, thus providing a single underling
mechanism for deciding when and where to look based on
LATER-like ballistic accumulation of evidence (a proposition we
will test empirically in Part III). LATER or LATER-like models
have never previously been applied to predict the end point of
saccades; the model presented in this paper is the first to do so. We
call this model LATEST (Linear Approach to Threshold Explain-
ing Space and Time).

In LATEST, the inclusion of information in central vision
contributing to saccadic decision times necessarily means that the
resulting decision map is fundamentally retinotopic in nature.
Thus, each fixation will be underpinned by a different decision
map, which evolves over time from the simultaneous computation
of Stay-or-Go evaluations throughout peripheral vision. Because
deciding whether to saccade to each peripheral location involves
the relative evaluation of evidence from both the current and
candidate location, the manner in which the log odds rise toward
threshold at any particular peripheral location may vary consider-
ably from fixation to fixation. For example, the decision signal
associated with potentially saccading to Location 2 in Figure 3 will
rise differently when the participant is fixating Location 1 than it
would if the participant was fixating other locations (say Location
3). In this way it is not solely the information at Location 2 that
determines whether and how quickly it is selected, but the inter-
play between the information at that location and in central vision.
This proposed antagonism between fovea and periphery is a prom-
inent feature of many of the underlying neural structures con-
cerned with the initiation of saccades. In the colliculus, there are
mechanisms of mutual inhibition between neurons in the region
corresponding to the fovea, and thus the current point of fixation,
and those coding for peripheral targets (Munoz & Istvan, 1998;
Munoz & Wurtz, 1995), and a similar antagonistic arrangement
has been reported in monkey frontal eye fields (Hanes & Wurtz,
2001), though there may not be the sharp distinction between a
‘fixation zone’ and the rest of the colliculus that was originally
believed (Goffart, Hafed, & Krauzlis, 2012; Nummela & Krauzlis,
2011).

In the present paper we evaluate both the appropriateness of our
proposed Stay-or-Go theoretical foundation of LATEST and the
ability of a single model to explain both when and where observers
look. We do this by first producing a descriptive model of the
factors that contribute to modulation in saccade timing in scene
viewing (Part II) and then using the outcome of this modeling of
when observers move the eyes to predict where people look
(Part III).

Figure 3. Schematic of evaluating potential target locations in LATEST.
Here separate Stay-or-Go evaluations race against each other for two
peripheral locations (2,3). For each evaluation the Go signal comprises
information at the peripheral location (�2, �3) along with factors associated
with the saccade that is required to move to that location (�12, �13). The
Stay signal for each evaluation derives from the information present at the
currently fixated location (�1). The decision signal will rise at different
rates in each decision unit, with the saccade being triggered to the location
at which the decision signal reaches threshold first. In this case the unit
associated with location 3 reaches threshold first and the outcome of this
schematic example would be a saccade to location 3.
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Part II: Modeling When We Move Our Eyes

Despite considerable evidence regarding factors that appear to
modulate fixation duration, our theoretical understanding of the
control of fixation duration in complex scene viewing is relatively
underdeveloped, with only a small number of models having been
proposed.

Contrasts Between LATEST and Previous Models of
Fixation Duration

At least four key factors define LATEST and differentiate it
from existing models of fixation duration. First, LATEST proposes
that the time taken to move the eyes reflects the time taken to
gather sufficient evidence to support a decision to move the fovea
to a peripheral location. In this way, the decisions about where and
when to move the eyes are intricately and inevitably linked and
arise form the same underlying processes. No other model of
fixation duration makes this claim. Many models of fixation place-
ment remain silent on the determinants of fixation duration and
vice versa (e.g., Borji & Itti, 2013; Nuthmann, Smith, Engbert, &
Henderson, 2010). Those few models that do address both the
spatial and temporal aspects of gaze control propose a mechanistic
division between the two. For example, Findlay and Walker (1999)
proposed that when and where the eyes move arises from compe-
tition between a ‘fixate center’ mechanism that governs how long
a fixation should be maintained and a ‘move center’ mechanism that
identifies where the eyes should move to next. Even models that
propose that temporal and spatial factors interact to influence target
selection rely on two separate processes for time and space that
compete with each other rather than a single underlying process
that encompasses both when and where we look. For example. to
explain correlations between fixation duration and saccade ampli-
tude in scene viewing, Unema, Pannasch, Joos, and Velichkovsky
(2005) proposed that selection arises from the combination of a
race to threshold to trigger a saccade to a salient object and an
inhibitory process to decrease local activation in the salience map
shortly after the start of the fixation.

Second, in LATEST, decisions about when and where to move
the eyes arise from Stay-or-Go evaluations of the relative benefit
offered by moving the eyes to a new location or by staying at the
current foveal target. This allows both central and peripheral
information to contribute to the decision and thus to influence
decisions in space and time. Most models of fixation duration are
not so inclusive. For example, Mackay, Cerf, and Koch (2012),
who in other respects have provided an account of fixation dura-
tion that is closest to the one we propose in this article, only
considered visual information at the saccade target location with
no contribution of central information to saccade timing. (As we
will see, LATEST also includes a broader spectrum of visual
features whereas Mackay et al., only considered salience as de-
scribed by Walther & Koch, 2006, and faces.)

Third, fixation times in LATEST are assumed to reflect decision
time alone with no additional processes (such as saccade program-
ming) contributing to their duration. This omission of saccadic
programming time as a central factor in determining saccade
timing in LATEST stands in contrast to other models of saccade
duration. For example, in their CRISP (Controlled Random-walk
with Inhibition for Saccadic Planning) model, Nuthmann et al.

(2010) propose that saccades are generated by a random walk to
threshold which is followed by the initiation of a saccade program.
The saccade program comprises first a labile stage during which
the saccade can be cancelled, and then a nonlabile stage during
which cancellation is not possible (see also Becker & Juergens,
1979). The random walk for the next saccade begins as soon as the
labile stage of the saccade program is initiated. Visual and cogni-
tive factors exert their influence on fixation duration via alterations
in the random walk process as well as cancellations of saccade
programs during their labile phase. The lack of saccadic program-
ming time in LATEST stems from the fact that very few neurons
appear to be involved between the neural trigger signal to move the
eyes and the oculomotor muscles (Büttner, Hepp, & Henn, 1977),
thus neural programming seems unlikely to contribute signifi-
cantly to the time it takes to decide to move the eyes. Indeed, a
wide variety of neurophysiological studies have demonstrated very
short latencies between visual stimulation and the appearance of
responses in various visual areas, and between electrical stimula-
tion in the oculomotor system and saccadic responses (Robinson,
1972; Sparks, 1986; Sylvestre & Cullen, 1999).

Finally, in LATEST, the subpopulation of very short duration
fixations commonly observed in scene viewing and other studies
of saccade latencies and fixation durations arises from competition
between the main decision process and a maverick saccade gen-
erator. The former is under the influence of factors that govern
information gathering and evaluation, whereas the latter varies
greatly in rate of rise but does so around a mean rate of rise of zero,
meaning that occasionally it will rise to threshold faster than the
main decision unit, generating unexpectedly short fixation dura-
tions. This proposal again stands in contrast to existing models.
For example, in CRISP (Nuthmann et al., 2010) short duration
fixations occur because a saccade program initiated during the
previous fixation has already reached its nonlabile phase by the
time the current fixation begins and thus cannot be cancelled,
resulting in a saccade being executed soon after the start of the
current fixation.

Identifying Factors That Modulate Fixation Duration
in LATEST

What information is used to evaluate the Stay-or-Go decision?
Equation 3 suggests that decisions reflect the evidence in support
of moving to a peripheral location (�GO, Figure 3) relative to the
evidence in support of maintaining fixation at the current foveal
target (�GO, Figure 3). Thus information processing at these two
locations should contribute to decision times. In scenes, visual
information can be described at a variety of levels, from basic
low-level features to higher level semantic understanding. Prior
research suggests that fixation durations may be modulated by
information across this range of levels.

Substantial work has explored which specific visual features in
an environment influence fixation duration. Focusing on scene
viewing, degrading visual content by lowering luminance (Loftus,
1985) or eliminating high-spatial frequencies (Mannan, Ruddock,
& Wooding, 1995) result in prolonged fixations. However, not all
degradations of low-level information are associated with in-
creased fixation duration. For example, local image contrast ap-
pears to be independent of fixation duration (Einhäuser & König,
2003; Guo, Mahmoodi, Robertson, & Young, 2006). Hence, the
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degree to which fixation durations are systematically linked to
individual low-level image properties remains equivocal. Alterna-
tively, rather than defining scene information according to varia-
tion in individual features, another approach is to describe the
properties of scenes in terms of feature constellations. This ap-
proach is most commonly used to model fixation locations (Borji
& Itti, 2013; Itti et al., 1998; Judd, Durand, & Torralba, 2012), but
the general principles can be used to characterize fixation dura-
tions. For example, scenes with higher clutter (a metric based on
the covariance of several features within a scene, see Rosenholtz,
1999, 2001) are associated with longer search times (Henderson,
Chanceaux, & Smith, 2009; Rosenholtz, Li, & Nakano, 2007).
Because such approaches combine features they can be thought of
as intermediate levels of description.

Although the relationship between basic visual features in
scenes and fixation duration is uncertain and somewhat inconsis-
tent, semantic factors have well-documented influences on fixation
duration. Objects that are difficult to recognize (De Graef, Chris-
tiaens, & d’Ydewalle 1990) or that are semantically inconsistent
with the scene (Becker, Pashler, & Lubin, 2007; Bonitz & Gordon,
2008; Castelhano & Heaven, 2011; De Graef et al., 1990; Hen-
derson et al., 1999; Rayner, Castelhano, & Yang, 2009; Under-
wood, Templeman, Lamming, & Foulsham, 2008) all receive
longer fixations. These results imply that the semantic informa-
tiveness of an object may underlie fixation duration. Behavioral
goals also modulate fixation duration, with shorter fixation dura-
tions during search than during scene memorization (Henderson et
al., 1999; Nuthmann et al., 2010).

It is clear that visual information defined at basic, interme-
diate, or semantic levels in scenes is likely to impact saccadic
decision times and as such present important candidates for
components of any model of saccade timing in scene viewing.
Moreover, it is clear that these sources of information are not
constrained to the current target of fixation, but distributed over
the current and to-be-fixated location. For example, we know
that basic features can be extracted extrafoveally (Treisman &
Gelade, 1980) and such extrafoveal processing may be suffi-
cient to allow object recognition (Underwood et al., 2008; Li,
VanRullen, Koch, & Perona, 2002; Spotorno, Malcolm, &
Tatler, 2015). This implies that extrafoveal targets can receive
quite high levels of processing.

In addition to the low- intermediate-, and higher-level infor-
mation both at the fovea and in peripheral vision, other, less
strictly visual factors are also known to influence saccade
timings and should be included in our list of potential factors
that might modulate decision times. In Figure 3, we proposed
that factors related to the spatial relationship between the cur-
rent fixation and the selected target location should also be
considered as possible contributors to saccadic decision times
(expressed as �12). Based on previous evidence, we need to
consider the eccentricity of the targeted information as greater
eccentricity of targets will necessarily limit information supply
and thus influence the accumulation of evidence at the periph-
eral location. Furthermore, the amplitudes of incoming and
outgoing saccades can influence how long a fixation lasts,
although the nature and direction of this relationship is not
consistently observed (Cohen & Ross, 1977; Pelz & Canosa,
2001; Tatler & Vincent, 2008; Unema et al., 2005). Not only the
amplitude of the outgoing saccade matters, but also its direction

in relation to the incoming saccade. When two consecutive
saccades are in the same direction, the duration of the fixation
that separates them tends to be shorter than when the two
saccades are not in the same direction (Anderson, Yadav, &
Carpenter, 2008; Carpenter, 2001; Tatler & Vincent, 2008).
One additional nonvisual factor contributes to fixation dura-
tions is ordinal fixation number. In some of the earliest record-
ings of fixation behavior when viewing complex scenes and
patterns Buswell (1935) observed that fixation durations tend to
increase over the course of viewing an image for several sec-
onds, an effect that has been replicated frequently in subsequent
years.

Method

Participants. Seventy volunteers (mean age 23.3, 20 male)
from the University of Dundee participated in the experiment for
course credit or monetary compensation. All had normal or
corrected-to-normal vision and were naive to the purposes of the
experiment. The study was approved by the University of Dundee
Research Ethics Committee (SREC 10026, “Eye movements while
viewing scenes”).

Stimuli and apparatus. Sixty-four images of everyday in-
door and outdoor scenes were used as stimuli (Appendix Figure
A2), selected from image sets previously used in Tatler (2007) and
Brockmole and Henderson (2006). Images were displayed in
800 � 600 pixel format on a ViewSonic G90f-4 19-inch CRT
monitor running at a refresh rate of 100 Hz with the display
resolution set to 1024 � 768 pixels. At a constrained viewing
distance of 63.5 cm, the screen viewing area subtended approxi-
mately 31.8 � 23.8 degrees of visual angle. Images subtended
approximately 24.8 � 18.6 degrees. Gaze position was recorded at
a rate of 1000 Hz with an EyeLink 1000 (SR Research, Canada)
eye tracker. Viewing was binocular but data were recorded only
from the dominant eye. A chin and forehead rest stabilized the
head.

Procedure. Participants were informed that they would see
a series of photographs of everyday indoor and outdoor scenes,
and that they should remember as much as they could about the
scenes and their contents for a memory test that would follow
the final image. The memory test was not administered but
rather served to provide a common task across participants (see
Tatler, Hayhoe, Land, & Ballard, 2011, for a discussion). The
experimental trials were preceded by a 9-point calibration pro-
cedure that was used to ensure that gaze estimation was better
than 0.5 degrees on average over the 9 calibration points and no
worse than 1 degree on any of the individual calibration points.
If necessary, equipment set-up was modified and calibration
was repeated until these accuracy criteria were satisfied. Each
trial then began with a central fixation point. By interrogating
the spatial correspondence between this point and estimated
gaze position, calibration could be monitored throughout the
experiment and repeated when necessary. The scene was then
displayed for 10 seconds during which participants were free to
move their eyes.

Data quality and preparation. To parse the gaze record into
fixations and saccades, we used the SR Research algorithm with
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default sensitivity settings.1 Across participants, this algorithm
identified 127,197 fixations that began and ended while the scene
was visible on the display. However, we excluded 448 fixations
(.35%) that were located off the scene image and 10,007 fixations
(8.2%) that were considered unreliable2 from our analyses.

General modeling approach. Our modeling approach fol-
lowed two distinct steps. The first step was to conduct an essential
test of our basic model architecture by verifying that the distribu-
tion of fixation durations for each individual was consistent with
two LATER-like linear accumulation processes working in com-
petition: one a sensible unit and the other a maverick unit (see
Figure 2). However, distribution level modeling is not the goal of
this work—rather we are interested in whether we can model the
factors that modulate each observed fixation duration. Thus, the
second step in our modeling approach was to model the variation
in fixation duration on a fixation by fixation basis. We now explain
each of these two modeling approaches in detail.

Step 1: Distribution modeling procedure. Data were modeled
using the software application SPIC (Carpenter, 1994) to obtain
estimates of three parameters describing the underlying distribu-
tion(s) of fixation durations: the mean and standard deviation of
the rate of the main distribution of fixation durations and the
standard deviation of the rate for any identified subpopulation of
unusually short fixation durations (these constitute the three pa-
rameters in LATER, described earlier). Durations were modeled in
10-ms bins and Kolmogorov–Smirnov (Kolmogorov, 1941) tests
were performed to compare the observed distributions of fixation
durations to those predicted by a LATER model generating saccades
using the parameter estimates. Best-fit estimates of three distribution
parameters were obtained by minimizing the Kolmogorov–Smirnov
statistic. Because fixation durations vary considerably between
individuals (Andrews & Coppola, 1999) it is important to calculate
separate fits for each participant.

Step 2: Modeling variation in fixation duration. The distri-
bution modeling procedure allows us to identify any fixations likely to
have been terminated by a saccade generated by the maverick saccade
generator in our basic two-unit model of saccade generation (see
Figure 2). If we assume that the subpopulation of very short duration
fixations arises from a stochastic process, not influenced by visual or
cognitive factors, it is reasonable to suggest that any initial attempts to
model the factors that modulate fixation duration should not attempt
to encompass these essentially randomly terminated fixations. Rather,
modeling efforts should focus on understanding the factors that influ-
ence decision times in the main population of saccades. We therefore
constrained our modeling efforts in this section to those fixation
durations likely to have arisen from the main decision process and
likely to have involved an accumulation of evidence for evaluating the
decision to move the eyes or remain fixated at the current location (we
will provide a complete analysis of the subpopulation of short fixa-
tions in Part IV).

We used the three parameter estimates derived from the distribu-
tion modeling procedure to simulate saccadic decision times from two
competing LATER decision units—the main and maverick units—
and from this generate a simulated set of fixation durations. For any
simulated fixation duration, we then calculated the probability that
this duration would have been derived from the main distribution (see
Appendix Figure A3); this was calculated for each participant due to
the high variability in LATER parameter estimates (see Appendix
Table A1). Our calculated likelihoods were used to assign a proba-

bility that each observed fixation duration in our dataset was gener-
ated by the main decision unit. For analysis, fixations were included
if the estimated probability that they were drawn from the main
distribution of durations was greater than 60%.

Our final dataset for modeling comprised fixations that were
likely to have been terminated by a saccade generated by the main
decision process, that passed our quality assurance criteria and that
were followed by a fixation that also passes our quality assurance
criteria. These strict requirements resulted in a final dataset of
55,341 fixations for modeling.

Because fixation durations are not normally distributed, we
modeled their reciprocal. As described earlier, the reciprocal of
fixation duration conveniently describes the rate of rise of the
decision signal, �, and thus can be used to consider the influence
of the fixed effects in our model upon the rate of rise of the decision
process. We refer to this as the decision rate or � in the results section
that follows; � can be assumed to represent the linear sum of all the
component factors that contribute to it.

We used Linear Mixed Models to predict fixation durations,
using R Studio (RStudio Team, 2015) to run the lme4 package3

(Bates, Maechler, Bolker, & Walker, 2014) in the R statistical
analysis environment (R Core Team, 2014). This modeling ap-
proach allows between-subjects and between-item variance to be
estimated simultaneously, is able to handle mixtures of discrete
and continuous predictors, and is suitable for handling large num-
bers of covariates. These advantages are desirable for the present
work because previous literature identifies a number of different
factors that appear to be associated with modulations in fixation
duration and as such it is important to be able to evaluate a range
of possible factors in the model, while simultaneously accounting
for correlations between these factors. Based on previous studies
(reviewed above) we included measures of low-, intermediate-,
and high-level visual information in scenes as fixed effects.

For low-level information we computed orientation information
in the images which has been shown to account for spatial fixation
selection better than other sources of low-level information in
scenes (Baddeley & Tatler, 2006). Orientation information was

1 In the SR Research algorithm, blinks terminate fixation events in the
dataset. For all analyses we considered the two fixation events that fall
either side of a blink as separate fixations.

2 Fixations were excluded from any trial on which the pretrial calibration
check yielded an error in gaze position greater than 1 deg (3803 fixations)
or where calculated fixation duration was less than 10 ms (5 fixations). To
ensure the reliability of the fixation events identified by the SR Research
algorithm we employed precision criteria for the sample-to-sample char-
acteristics of samples recorded within fixation events. Here we used two
precision measures: root mean squared error (RMS) and bivariate contour
ellipse area (BCEA). The former measure considers only the between-
sample distances for each pair of samples within a fixation. The latter fits
an ellipse around all samples from a fixation event such that 63.2% of
samples are contained within it. For our data we used a simplification of
BCEA in which the two dimensions of the fitted ellipse are averaged to
provide a unidimensional measure of the dispersion of samples within each
fixation event, r(BCEA). For a consideration of these and other metrics for
assessing eye tracking data quality see Blignaut and Beelders (2012). We
employed a criterion RMS of 0.03 degrees and a criterion r(BEAC) of 0.15
degrees. This procedure excluded 6,199 fixations from subsequent analy-
ses.

3 The lmer() function returns t values but no associated p values. Asso-
ciated p values were calculated by creating models that selectively left out
each factor of interest and comparing these using the anova() function in R.
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computed using four oriented odd-phase Gabor patches (oriented
at 0 deg, 45 deg, 90 deg, and 135 deg), taking the absolute values
to capture unsigned difference from the mean. These four maps
were combined and normalized (see Baddeley & Tatler, 2006;
Tatler & Vincent, 2009; Tatler, Baddeley, & Gilchrist, 2005, for a
discussion). Orientation maps were constructed for high-frequency
information using Gabors with envelope standard deviation of 20
cycles per degree.

For intermediate-level information in scenes we used a model of
image salience. Many such models exist (Judd et al., 2012; Borji
& Itti, 2013). We described image salience using RARE20124

(Riche et al., 2013). This salience model describes feature rarity at
multiple scales within color and orientation feature channels. By
computing rarity at multiple scales, the model highlights locations
that differ from local context but are also globally rare in the
image. The overall salience map combines rarity maps across
features and scales.

Describing higher-level information in scenes is not trivial.
When attempting to model high-level, semantic effects in scene
viewing, we can consider global changes associated with different
task settings (as in Nuthmann et al., 2010), or we can try to capture
semantic effects within tasks. One could assume that describing
where objects lie in scenes would be an appropriate description of
semantic factors in images. Indeed object-level descriptions of
scenes can offer good accounts of where people look (Einhäuser,
Spain, & Perona, 2008; Nuthmann & Henderson, 2010). However,
it is not always clear how objects should be defined, and object
definitions are typically and necessarily subjective (Einhäuser et
al., 2008; Nuthmann & Henderson, 2010). Furthermore, semanti-
cally informative locations in scenes may be objects or may be
background locations (e.g., Charness, Reingold, Pomplun, &
Stampe, 2001).

An alternative approach—and the one that we used here—is to
collect subjective ratings from participants, asking them to indicate
the most semantically informative locations in scenes. In a rating
study, 27 participants from the University of Dundee and the
University of Notre Dame (none of whom participated in our main
eye movement study) were shown each of the 64 images used in
the main study and asked to select the five most semantically
interesting locations in the image. Participants were asked to select
locations based on how meaningful they were for the scene and
were explicitly instructed to ignore aspects such as the colors or
brightnesses in the images. Images were displayed using custom-
coded GUIs in Matlab and selections were made by clicking on
five locations in each image. Participants were able to reselect any
of their five selections before moving on to the next image, but
were not permitted to revise selections once they had moved on to
a new image. Images were displayed in random order. We used the
selections to create “semantic interest” maps by centering Gauss-
ians with full width at half maximum of two degrees around each
selected location.

Figure 4 shows examples of orientation, salience, and semantic
rating maps for five sample images used in the present study.
Information for subsequent modeling was extracted from these
maps by computing the mean value in each map within a 1
degree � 1 degree patch centered around fixation. Because we
were interested in the impact of information at fixation and at
potential peripheral target locations, we extracted information not

only for the current fixation but also for the next fixation location
(i.e., the target of the observed saccade).

Given previous evidence regarding factors that appear to influ-
ence fixation duration we included a further set of fixed effects in
our model of fixation duration. These were the ordinal fixation
number in each trial, the change in direction between the incoming
and outgoing saccades, and the amplitudes of the incoming and
outgoing saccades. Because retinal sampling limits will necessarily
restrict information availability in peripheral vision, we also in-

4 This model was chosen by first selecting four candidate salience
models that have been evaluated as part of the MIT saliency benchmark
project (Bylinskii et al., n.d.) and have freely available Matlab code for
their implementation. Models were selected based upon three desirable
criteria: (a) that they are based on bottom-up computations, rather than
including task-based parameters that describe higher-level sources of in-
formation for particular tasks (such as the person detector in Ehinger et al.,
2009); (b) that they do not include a central weighting to improve their fit
to human data, due to the prominent tendency for humans to fixate the
center of the screen irrespective of displayed content (Tatler, 2007), and (c)
that they involved some combination of features and computation with
respect to context to make the resultant maps somewhat sparse and qual-
itatively different from feature maps such as those we used for edge
information. The four candidate models evaluated were AWS (Garcia-Diaz
et al., 2012), Image Signature (Hou et al., 2012), RARE2012 (Riche et al.,
2013), and the salience toolbox (Walther & Koch, 2006). We ran the LMM
described below for predicting decision rate four times, each time with a
different one of the four candidate salience models providing the salience
description for the model. RARE2012 was selected as it provided the LMM
with the best overall fit to the data (assessed via anova() model compari-
sons and comparisons of AIC). Thus we use RARE2012 as our description
of intermediate-level visual information in scenes for the analyses that
follow.

Figure 4. Maps of orientation, salience, and semantic ratings for five
images used in the present study. See the online article for the color version
of this figure.
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cluded fixed effects for the interaction between the amplitude of
the outgoing saccade (which describes the eccentricity of the target
about to be fixated) and each of our three measures of visual
information in scenes.

The effects of each fixed effect in the final LMM are presented
graphically as partial effects using the remef() function provided
by Hohenstein and Kliegl (see Hohenstein & Kliegl, 2014, e.g.,
use) for lmer() outputs. This approach allows us to plot the
relationship between predictor and outcome once any effects of
other factors in the model have been removed, providing a better
reflection of the actual underlying relationship between each fixed
effect and the outcome.

Results

Distribution modeling. Figure 5 shows reciprobit plots of
distributions of fixation durations for six of our 70 participants (for
the distributions of all 70 see Appendix Figure A4). The promi-
nence of the population of early saccades is clear, suggesting that
there are two underlying distributions of fixation durations: one
comprising a relatively few fixations (typically well under 10% for
each participant) of short duration and the other comprising longer
ones and contributing the majority of observations for each par-
ticipant. These findings support our proposed basic architecture for
LATEST of two competing LATER-like decision units: the main
unit generating sensible decisions and the maverick unit that
competes with it.

For all participants, fixation durations were well-fitted by our
proposed LATEST basic model architecture of a main decision
unit together with an early component with zero intercept
(Kolmogorov–Smirnov, p � .1, one-sample test; see Figure 6 for
two examples of simulated data based on parameter fits). Thus fits
had three free parameters: the mean � and standard deviation � of
the rate of rise for the main population and the standard deviation
�� for the early population (which had a mean rate of rise of 0).

The parameter estimates (Appendix Table A1) and reciprobit plots
(Appendix Figure A4) reveal the large variation between partici-
pants.

Modeling fixation duration in the main unit. Table 1 shows
the output for our LMM describing saccade timing in scene view-
ing for those fixations likely to have been terminated by a saccade
generated by the main Stay-or-Go decision unit in our two-process
competitive model of saccade generation.

Decision rate (and thus fixation duration) varied with ordinal
fixation number, the angular change in direction between the
incoming and outgoing saccades, and the amplitudes of the incom-
ing and outgoing saccades (see Figure 7). The effects of incoming
and outgoing saccade amplitude were qualified by interactions
with change in saccade direction. These findings are largely in line
with previous studies that have considered the relationship be-
tween these variables and fixation duration, which have found that
fixation durations increase with viewing time and thus ordinal
fixation number (Buswell, 1935; Unema et al., 2005), increase
with increasing angular change between surrounding saccades
(Anderson et al., 2008; Carpenter, 2001; Smith & Henderson,
2009; Tatler & Vincent, 2008), and have also demonstrated a
nonlinear relationship between fixation duration and the amplitude
of the outgoing saccade (Unema et al., 2005; Velichkovsky,
Rothert, Kopf, Dornhöfer, & Joos, 2002). Unlike previous results,
however, we found a strong non-linear relationship between in-
coming saccade amplitude and decision rate, with larger saccades
being followed by longer duration fixations (contrary to Tatler &
Vincent, 2008, who found no relationship).

Decision rate varied significantly with edge content at current
and target locations, with increasing edge content at fixation being
associated with decreased decision rate, but increasing edge con-
tent at the target location being associated with increased decision
rate (see Figure 8). For visual salience, there was a significant
relationship between salience at fixation and decision rate (see

Figure 5. Reciprobit plots of the distribution of observed fixation durations for six of our 70 participants. These
six participants illustrate that participants varied considerably. All, however, show some overrepresentation of
early/maverick saccades, seen by the leftward kink in the distribution toward very short durations. Data are
shown for Participants 8, 6, 34, 55, 13, and 60 from top left to bottom right.
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Figure 8), with higher salience at fixation reducing decision rate.
Decision rate was strongly predicted by semantic interest at the
current and next fixation, with decision rate decreasing as semantic
interest at fixation increased and decision rate increasing as se-
mantic interest at the saccade target location increased (see Figure
8); the effect of semantic interest at the target location was qual-
ified by an interaction with outgoing saccade amplitude (thus
target eccentricity) suggesting that increasing retinal eccentricity
reduced the effect of semantic interest on decision rate.

Discussion

The distribution modeling results suggest that the durations of
fixations observed while participants viewed images of real-world
scenes in our study can be well described as arising from a process of
linear accumulation of evidence for a decision process, operating in
competition with a maverick signal that gives rise to a small number
of very fast responses when this maverick signal reaches threshold
activation faster than the rising sensible decision signal (we will

Figure 6. Example plots of observed fixation durations together with simulated fixation durations. Simulations
were based upon parameter estimates derived from SPIC.

Table 1
Output of LMM Models to Predict Decision Rate in the Main Population of Saccades

Fixed effects

Full model Minimal model

Estimate SE t Estimate SE t

(Intercept) 3.2924 .049 67.03��� 3.2933 .049 67.03���

Ordinal fixation number �.0368 .004 �10.13��� �.0367 .004 �10.12���

Change in direction between saccades �.0860 .004 �23.79��� �.0860 .004 �23.82���

Incoming saccade amplitude (linear) .0782 .010 7.62��� .0777 .010 7.59���

Incoming saccade amplitude (quadratic) �.0445 .010 �4.38��� �.0437 .010 �4.31���

Outgoing saccade amplitude (linear) .0346 .011 3.26�� .0322 .010 3.16���

Outgoing saccade amplitude (quadratic) �.0411 .011 �3.67��� �.0379 .010 �3.66���

Change in direction � Incoming saccade amplitude (linear) �.0342 .010 �3.37��� �.0189 .004 �5.40���

Change in direction � Incoming saccade amplitude (quadratic) .0163 .010 1.61 n.s. — — —
Change in direction � Outgoing saccade amplitude (linear) .0223 .010 2.17� .0248 .004 6.50���

Change in direction � Outgoing saccade amplitude (quadratic) .0033 .011 .31 n.s. — — —
Edge information at fixation �.0154 .004 �3.73��� �.0147 .004 �3.58���

Edge information at target location .0110 .004 2.70�� �.0147 .004 2.76��

Edge information at target location � Outgoing saccade amplitude �.0052 .004 �1.38 n.s. — — —
Salience at fixation �.0165 .004 �3.73��� �.0145 .004 �3.70���

Salience at target location .0003 .004 .07 n.s. — — —
Salience at target location � Outgoing saccade amplitude �.0052 .004 �1.36 n.s. — — —
Semantic interest at fixation �.0653 .004 �16.03��� �.0659 .004 �16.22���

Semantic interest at target location .0288 .004 7.43��� .0286 .004 7.43���

Semantic interest at target location � Outgoing saccade amplitude �.0047 .004 �1.25 n.s. �.0071 .004 �1.96�

Random effects variance
Subjects .163 .164
Scenes .003 .003

Log-likelihood �67738.507 �67721.281
Deviance 135477.013 135442.562
Akaike information criterion (AIC) 135523.013 135478.562
Bayesian information criterion (BIC) 135728.202 135639.145
N 55341 55341

Note. Results are shown for the full model containing all evaluated fixed effects and for the most reduced version of the model. The full model was
reduced by removing non-significant fixed effects in stepwise fashion until we had removed as many fixed effects as possible without significantly changing
the overall fit of the model.
� p 	 .05. �� p 	 .01. ��� p 	 .001.
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investigate the maverick saccades in detail in Part IV). Thus, our
observed data confirm the proposed basic architecture of LATEST:
Two competing LATER-like decision units, one that conducts a
sensible evaluation of evidence, the other that produces maverick
responses.

An important prediction of LATEST is that because of the inverse
relation between Stay and Go, a factor that increases � at the fixation

point will be expected to reduce it when present at the next location.
As can be seen in Figure 8, in the case of both edge information and
semantic interest, this prediction appears to be fulfilled: at fixation, �
falls both with increasing edge information and semantics, whereas
the opposite is true in respect of the next location.

If we return to the schematic of the decision process presented
in Figure 3, we can use the results of the LMM to suggest the likely
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Figure 7. Partial effects for (a) ordinal fixation number, (b) change in saccade direction, (c) incoming saccade
amplitude, (d) outgoing saccade amplitude on decision rates in scene viewing. Shaded regions indicate 95%
confidence intervals.
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Figure 8. Partial effects for each of the visual predictors on decision rate in scene viewing. Shaded regions
indicate 95% confidence intervals.
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contributors to the Stay and Go components of the evaluation
(namely �1, �2 and �12). Importantly, the LMM approach allows
variance to be attributed appropriately, ensuring that reported
contributions of each fixed effect are those that can be attributed
uniquely to that fixed effect after the contributions of all other
fixed effects in the model have been accounted for.

The finding that ordinal fixation number influenced decision
rate further implies that we need to include an additional compo-
nent for factors unrelated to the current or candidate (next) location
(see Figure 9), which we will call �0. We might also attribute the
influence of the incoming saccade amplitude to this category of
effects as it is not strictly related to information processing in
central or peripheral vision or to planning the next saccade. Given
our theoretical assertion that the decision is an evaluation of two
competing hypotheses (in this case Stay vs. Go), it is helpful to
attribute any factors not directly attributable to the current or next
location to one of the two hypotheses being evaluated. Because
these factors are by definition not related to the content of either
the current or the next location they could be assigned to either of
our two hypotheses. However, we prefer to attribute them to the
Stay component of the evaluation for two reasons. First, they are
common across all decision processes that we propose are being

evaluated simultaneously when selecting from multiple candidate
locations for the next saccade and thus share this common contri-
bution that factors at the current location do to each decision
process (see Figure 3). Second, the results of our LMM show that
as ordinal fixation number increases so decision rate decreases;
thus this factor contributes by promoting elongated stays at the
currently fixated location as viewing progresses.

Factors influencing �STAY. If we start by decomposing
�STAY into factors related to visual processing at the current foveal
location �1 and factors not strictly related to current visual pro-
cessing �0 we can use the findings of our LMM to suggest the
likely contributors to these components:

�0 � aN � bA � cA2 (4)

where N is the ordinal fixation number in viewing, A is the
amplitude of the incoming saccade and A2 is the squared amplitude
of the incoming saccade; a, b and c represent the weights of these
factors, derived from the model output shown in Table 1.

�1 � dI1 � eS1 � fO1 (5)

where I is the semantic interest rating, S is the salience and O is the
orientation or edge content at the current foveal target location (1);
each weighted (d-f) according to the LMM output in Table 1.

Thus, our findings show that low-, intermediate-, and higher-
level information at fixation all contribute to decision time by
promoting perseverance at the current fixation location, with de-
cision rate decreasing when the current location was rich in edge
information, high in visual salience or was rated as semantically
meaningful. In prior work, influences of low-level visual features
on fixation duration have only been found when visual information
is degraded, with longer durations when global luminance is re-
duced (Loftus, 1985) or scenes are low-pass filtered (Mannan et
al., 1995). These previous findings for degraded scenes may reflect
decreased discriminability of information in scenes, leading to
increased processing time, and as such are rather unrelated to the
contribution of low-level visual information described in the pres-
ent study. However, our finding that low-level edge information in
scenes contributes to saccade timings is at odds with previous
work that has found no relationship between low-level proper-
ties—namely contrast, which is highly correlated with edge infor-
mation—and fixation durations in scene viewing (Einhäuser &
König, 2003; Guo et al., 2006). The reason for this difference
between our findings and those of Einhäuser and König (2003) and
Guo et al. (2006) may arise from the inclusion of other potentially
correlated sources of information in our model, which may reveal
relationships not found when these correlations are not accounted
for (see Baddeley & Tatler, 2006, for a similar argument about the
need to account for correlations between features to reveal better
understanding of the influences of any feature). Alternatively, if
the contribution of different sources of information reflects an
evaluation of the expected benefit of Staying or Going, then the
contribution of any particular source of information is likely to be
quite sensitive to task demands (we will return to this point in Part
V). Semantic effects on fixation duration have been found in a
variety of prior studies. Objects that are semantically inconsistent
with the scene in which they are placed are fixated for longer
(Bonitz & Gordon, 2008; Castelhano & Heaven, 2011; De Graef et
al., 1990; Underwood et al., 2008). Our effect of prolonged fixa-

Figure 9. Revised schematic of a saccadic decision. Here location 0 is the
previous fixation, 1 is the current fixation and 2 is the next fixation
location. In addition to evaluating information from the current location,
�1, next location, �2, and the retinocentric position of the next location,
�12, factors unrelated to these locations, �0, also appear to contribute to
saccade timing. At least in part �0 involves factors related to the incoming
saccade.
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tion at semantically informative locations is therefore consistent
with previous studies.

Factors influencing �GO. Breaking down �GO into factors
related to visual processing at the target location �2 and factors
related to getting the gaze to the target location �12 we can suggest
the following contributing factors:

�2 � gI2 � hO2 (6)

where I is the semantic interest rating and O is the orientation or
edge content at the target location (2); each weighted (g-h) accord-
ing to the LMM output in Table 1.

�12 � iC � jR2 � kR2
2 � lR2 . I2 � mC . R2 � nC . A (7)

where C is the change in saccadic direction required to saccade to
the next location, and R and R2 represent the linear and quadratic
effects of the retinocentric position of the target location (i.e.,
outgoing saccade amplitude). Interactions between semantic inter-
est at the target location and its retinal eccentricity, R2 . I2, between
change in saccade direction and outgoing saccade amplitude,
C . R2, and between change in saccade direction and incoming
saccade amplitude, C . A, can all be attributed to �12. Weights i–n
are derived from Table 1.

Our finding that higher-level semantic interest at a peripheral
target location can influence saccade timings in scene viewing
suggests that processing of potential target locations is sufficient to
extract semantic information in peripheral vision. Similar propos-
als of semantic processing prior to foveal inspection have been
suggested for scene viewing (Li et al., 2002; Underwood et al.,
2008) and reading (Engbert, Nuthmann, Richter, & Kliegl, 2005;
Reichle, Pollatsek, Fisher, & Rayner, 1998).

Decision rate decreased (nonlinearly) with increasing outgoing
saccadic amplitude. Because outgoing saccade amplitude is itself a
measure of target eccentricity, this effect is as would be predicted
given retinal sampling limits, which inevitably result in visual
information being less readily available as retinal eccentricity
increases, thus leading to longer saccade latencies (Reddi et al.,
2003). The interaction between outgoing saccade amplitude and
semantic interest at the target location suggests that semantic
processing was affected by target eccentricity in a way that was
above and beyond the influence of eccentricity on other visual
information sources.

The decision process outlined in this section and characterized
in the LMM describes a single decision about whether to move the
gaze to a particular location in the scene or maintain the current
fixation. However, we are modeling the outcome of a decision
process rather than the decision process itself. That is, we already
know the chosen target location and so can look for features of that
target location that might have contributed to the decision process.
In complex scenes, the decision to move the eyes is not a simple
evaluation of a single selected target location in peripheral vision.
Rather, every location in the scene is a potential saccade target and
must be evaluated. Thus, in our conceptualization of the problem,
the observed saccade reflects the winner of multiple Stay-or-Go
evaluations carried out in parallel across candidate locations in the
scene, each rising to threshold as evidence is accumulated over
fixation time. In this way, the saccade that is ultimately triggered
reflects the winner of a race between many competing scene
locations. This winner is the location for which the evidence that

behavioral goals would best be served by moving to that location
rather than maintaining fixation was fastest to reach the criterion
threshold for triggering a saccade.

If this framing of the decision process is correct, then we should
be able to predict the likely time taken to decide to saccade to any
location in the scene given a known starting location. Assuming
that the ultimate destination is that location at which the support
for moving the eyes compared with maintaining fixation reaches a
threshold criterion the fastest, then we should be able to use our
understanding of the dynamics of saccade timing decisions to
predict where we direct our saccades in the scene.

As promised earlier, we now turn from considerations of sac-
cadic timing to considerations of where the saccades are directed;
more specifically, whether our model of saccade timing is also able
to provide a description of spatial selection in scene viewing. To
date no single model has offered a unified description of spatial
and temporal selection in scene viewing.

Part III: Modeling Where We Move Our Eyes

No variant of a LATER-like model of latency or fixation dura-
tion has ever also been used to predict the end point of a saccade.
Our goal in this paper was not only to develop a novel LATER-like
model of fixation duration during scene viewing, but to use that
same model as a means to predict fixation locations. In Part III, we
evaluate LATEST’s ability to do exactly this. Before turning to
this issue directly, some general comment on the modeling of
fixation location, including a review of specific existing models, is
needed. We begin this discussion by noting that a prevalent con-
cept in trying to explain where saccades are directed in complex
scenes is that the scene is represented in the brain as a spatial map,
and that the choice of target is the result of competition between
elements of that map. This in turn poses two major questions:
‘What is being mapped?’ and ‘What is the nature of the compet-
itive process?’

What Is Being Mapped?

An obvious suggestion is that it is a map of conspicuity or
salience, based on low-level image features, as pioneered by Itti,
Koch and colleagues (Itti & Koch, 2000; Itti et al., 1998; Koch &
Ullman, 1985). A wide range of models based on conspicuity have
been proposed since Itti’s model, which vary in the manner in
which features are defined and combined to produce the salience
map (see Borji & Itti, 2013; Judd et al., 2012). But it is clear that
maps also need to incorporate high-level contributions as well, for
example in the form of task-based weighting of feature channels
(Navalpakkam & Itti, 2005), expected object appearance (Kanan,
Tong, Zhang, & Cottrell, 2009) and expected object location
(Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009; Torralba,
Oliva, Castelhano, & Henderson, 2006). Models that include both
image salience and such higher-level information tend to make
better predictions for where saccades are directed when viewing
scenes. While most contemporary models are based around con-
spicuity maps, some suggest that the underlying map might reflect
proto-objects (Wischnewski, Belardinelli, Schneider, & Steil,
2010) or objects (Nuthmann & Henderson, 2010) rather than
low-level conspicuity. In all cases, saccade targets are selected
from spatial maps created from incoming visual information,
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which can be thought of collectively as priority maps for attention
allocation. Neurophysiological evidence supports the notion of
such priority maps that combine low- and high-level information
(e.g., Fecteau & Munoz, 2006). Evidence for such maps is abun-
dant and can be found for the superior colliculus (McPeek & Keller,
2002), pulvinar (Robinson & Petersen, 1992), V1 (Li, 2002), V4
(Mazer & Gallant, 2003), LIP (Gottlieb, Kusunoki, & Goldberg,
1998), and the frontal eye field (Thompson & Bichot, 2005).

Our proposed decision map bears some similarities with those
described above for spatial selection: we propose a spatial map of
activity that reflects priority from which decisions about saccades
are made using a winner-takes-all process. However, we can
qualify the spatial frame of reference for our map as being funda-
mentally retinocentric: each decision process involves the calcu-
lation of the relative merit of moving compared with staying at the
currently fixated location. Retinotopy is an increasingly common
component of priority map models of fixation selection, given the
need to account for peripheral acuity sampling limitations (e.g.,
Vincent, Troscianko, & Gilchrist, 2007; Wischnewski et al., 2010).

What Is the Nature of the Competitive Process?

In previous work, it is generally assumed that selection involves
some kind of winner-takes-all race between candidate areas of the
map, but the implication that spatial selection of a target ought to
be closely related to the time taken to decide to initiate the saccade
has tended to be neglected. The key difference between our pro-
posed decision map and the priority maps commonly proposed in
the literature is that the map evolves dynamically over time within
a fixation as evidence is gathered and evaluated. This temporal
evolution provides a map that ought to be able to account not only
for where we move our gaze to but also for when we move it. The
manner in which the map evolves over time should reflect factors
related to the local to the availability of evidence at each peripheral
location but also related to the information in central vision.

The results of Part II show that decision times in scene viewing
are influenced by visual information in central and peripheral
vision and by less visually based factors such as ordinal fixation
number and saccade amplitudes and direction. If our Stay-or-Go
theoretical foundation is appropriate for describing these decisions
then not only should the factors identified in Part II also influence
where observers fixate, but also the relative importance of different
factors in decision timing should reveal the relative importance of
those factors in spatial selection. In Part III we test this assertion by
using the weights of the factors evaluated in the LMM presented in
Part III to predict where observers looked when viewing the scenes.

Method

Computing LATEST spatiotemporal decision maps. We
can use the weights in the LMM to predict decision rates for any
location in a scene. Given that decision rates derive from the
balance between factors favoring moving to a new location (Go)
and those favoring staying at the current location (Stay), decision
rate estimation requires both a starting location and a target loca-
tion. Thus for the images we used in our study, for a particular
starting pixel location we can calculate the expected decision rate
for deciding to move gaze to any other pixel in the image. If
saccades result from a race between multiple Stay-or-Go evalua-

tions being carried out in parallel throughout peripheral vision, the
pixel with the highest predicted decision rate should be the one that
would be looked at next given the selected starting position in the
scene (with the obvious caveat that there is precision error from
both the eye tracker and the saccadic targeting system).

To evaluate whether these decision maps calculated from the
relative weights of factors influencing decision time do indeed
predict where observers fixate, for each observed fixation in the
dataset we calculated the expected decision rate for every pixel in
the scene. We can then use these decision maps, derived from
timing data, to compare these predictions with where our human
observers actually looked next. If our framing of saccadic deci-
sions in space and time as arising from the same underlying
decision processes is appropriate, we should find good correspon-
dence between these predictions and where subjects actually look;
if not—if when and where we move our gaze are under separate,
independent control—the correspondence is likely to be low.

For our calculation of predicted decision rate, �, for each
fixation we can break down this calculation into the four compo-
nents �0-2 as described in Equations 4–7. �0 was estimated based
upon the ordinal fixation number and the incoming (i.e., previous)
saccade amplitude. �1 was estimated by looking up the observed
fixation location in maps of edge content, salience (RARE2012)
and semantic ratings, and taking the mean values within 0.5
degrees of fixation as described in the method for the previous
section. We then calculated �2 and �12 for each pixel in the scene
in turn. �2 was estimated in the same way as �1 but for the
candidate target pixel rather than starting pixel. �12 was estimated
by calculating the size and change in direction of the saccade that
would be needed to bring gaze to the pixel under evaluation (i.e.,
the distance between it and the observed point of fixation, and the
change in direction between the incoming and candidate outgoing
saccade that would be required to bring the eye on to it). We also
included calculations for the interactions between change in sac-
cadic direction and incoming saccade amplitude, change in sacca-
dic direction and the candidate outgoing saccade amplitude, and
between the candidate outgoing saccade amplitude and the seman-
tic interest at the candidate location. Examples of predicted deci-
sion rate maps for five successive observed human fixations can be
seen in Figure 10.

Evaluating spatial selection in LATEST. If spatial selection
proceeds on a winner-takes-all basis from our predicted decision
rate maps, the pixel in the image associated with the predicted
maximum decision rate should correspond with the target of the
next observed human saccade. However, given the inherent ran-
domness in saccadic decision processes (Carpenter, 1981), to-
gether with instrument error from the eye tracker and precision
error from the saccadic system, such predictions must necessarily
be subject to a degree of stochastic variability. We therefore
evaluated the spatial predictiveness of the model by creating
binary maps indicating the n% pixels with highest predicted deci-
sion rate (see Figure 10), and then considered the whether each
observed saccade targeted a location that fell within the regions
predicted in the binary map (as in Judd et al., 2012).

To quantify the ability of the model to account for spatial
selection, we compared the proportion of observed human fixa-
tions falling within predicted regions of the scene to that expected
by chance. This chance baseline for selecting predicted regions
was calculated using control locations drawn from a distribution
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that encompasses image-independent viewing biases in observers,
such as the tendency to look at the center of a scene irrespective of
the content of the displayed scene (e.g., Tatler, 2007). This ap-
proach offers a more conservative, and arguably more suitable
(Clarke & Tatler, 2014), evaluation of any spatial selection model
because it allows an evaluation of the degree to which a model
accounts for fixation selection above and beyond that which can be
attributed to image-independent biases.

To measure model performance we evaluated the ability of the
threshold maps to account for observed human behavior over a
range of thresholds. This allowed us to calculate the area under the
Receiver Operating Characteristic (ROC) curve for the spatial
predictions of our LATEST model by comparing hit rate to false

alarm rate over varying thresholds (e.g., Judd et al., 2012). The
area under the ROC curve (AUC) provides a powerful and com-
monly used measure of model performance (Tatler et al., 2005;
Borji & Itti, 2013).

Comparing LATEST to existing models of spatial selection.
We selected eight salience models that cover a range of different
methods for describing visual information, are available as Matlab
toolboxes and do not rely on parochial parameter settings for
particular tasks. Specifically we evaluated spatial selection perfor-
mance of (a) AIM, the information-maximization method pro-
posed by Bruce and Tsotsos (2007); (b) the Adaptive Whitening
Saliency Model (AWS) proposed by Garcia-Diaz, Leborán, Fdez-
Vidal, and Pardo (2012); (c) the feature congestion measure of

Figure 10. Predicted decision maps for five sequential fixations (shown in top left panel) made by one
participant in the present study. The left column shows the predicted decision rate maps for each fixation. The
second columns shows binary thresholded maps, showing the pixels with the 20% highest predicted decision
rates. The three columns that follow show decision rates predicted only on the basis of change in saccadic
direction, outgoing saccade amplitude and the interaction between these two factors. In each panel we plot the
current fixation location, the previous fixation location and next observed fixation location. Using the 20%
thresholded prediction maps, our model accounts for four of the five fixations depicted here. See the online
article for the color version of this figure.
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visual clutter from Rosenholtz et al. (2007); (d) Graph-based visual
saliency (GBVS: Harel, Koch, & Perona, 2006); (e) Image Signa-
ture (Hou, Harel, & Koch, 2012); (f) RARE2012 (Riche et al.,
2013); (g) the salience toolbox (Walther & Koch, 2006), which is
similar, but not identical, to the algorithm proposed by Itti et al.
(1998); and (h) SUN: the Bayesian model for saliency using
natural statistics developed by Zhang, Tong, Marks, Shan, and
Cottrell (2008). Figure 11 shows the eight resultant salience maps
for five images used in the present study.

To evaluate the performance of each model in accounting for
human fixation behavior we used the same thresholding procedure

and comparison to control locations described for evaluating the
predictions derived from our LATEST model. We were then able
to compare the ROC curves for the predictions from LATEST to
those for each of the eight computational salience models of spatial
selection in scene viewing.

Results

Figure 12 provides an example of the proportion of fixations
accounted for by LATEST, when the threshold of the predicted
latency map includes the 20% of pixels with the fastest predicted

Figure 11. Salience maps for five example images used in the present study. AIM � attention based on
information maximisation; AWS � adaptive whitening saliency; GBVS � graph-based visual saliency;
RARE � multi-scale rarity-based saliency; STB � the saliency toolbox; SUN � saliency using natural statistics.
See the online article for the color version of this figure.
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decision rate. Performances of each of the eight tested salience
models are also shown when the threshold includes the 20% of
pixels with the highest salience. For comparison, the proportion of
control samples falling within the above-threshold portions of the
maps for each model are also shown. At this 20% threshold not
only does LATEST account for a higher proportion of fixations
than any other model (at 48.0%) but also has the second lowest
proportion of false alarms (at 21.9%). Notably this false alarm rate
is considerably lower for LATEST than the four salience models
that predict the highest proportion of human fixations (RARE2012,
GBVS, IS and AWS), and indeed the only model that has a lower
false alarm rate, STB, also has the lowest hit rate.

Of course the example in Figure 12 is merely illustrative. A
better test of any model is to vary the threshold of the binary
prediction map and see how this affects the hit rate and false alarm
rate for each model. The area under the ROC curve (AUC)
provides a single summary metric that expresses the relationship
between false alarm rate and hit rate. Table 2 shows that LATEST
performed on a par with the best of the existing, tested models of

spatial selection (for our dataset, the best overall account of spatial
selection by a preexisting salience model was for AWS). However,
to better understand the performance of our model with respect to
existing models, it is useful to plot the effect of varying the
threshold on the ROC curve. Figure 13 (which plots the curves
used to calculate the AUC values in Table 2) shows that the
performance of LATEST relative to the other models and indeed
relative to chance varies considerably over varying false alarms
(thus varying thresholds in the binary predictions maps). Specifi-
cally, at low false alarm rates, LATEST performs better than any
of the evaluated existing models by a considerable margin. That is,
when the models are used to predict only a small proportion of
pixels as likely targets of the next saccade—thus evaluating the

Figure 12. Model performance (when spatial maps for each model were created with a threshold of 20%) for
our proposed spatiotemporal decision model, LATEST, and for eight tested salience models. Dark gray bars
show the proportion of observed fixations falling with regions predicted by each model (i.e., hits). Light gray
bars show the proportion of control locations falling with regions predicted by each model (i.e., false alarms).
Error bars show bootstrapped 95% confidence intervals (10,000 resamples). AIM � attention based on
information maximisation; AWS � adaptive whitening saliency; FC � feature congestion measure of visual
clutter; GBVS � graph-based visual saliency; IS � image signature; RARE � multi-scale rarity-based saliency;
STB � the saliency toolbox; SUN � saliency using natural statistics.

Table 2
AUC Values for LATEST and Each of the Eight Evaluated
Salience Models

Model AUC

LATEST .6205
AIM .6012
AWS .6267
FC .5889
GBVS .5546
IS .6170
RARE .6152
STB .5212
SUN .6015

Note. AIM � attention based on information maximisation; AWS �
adaptive whitening saliency; FC � feature congestion measure of visual
clutter; GBVS � graph-based visual saliency; IS � image signature;
RARE � multi-scale rarity-based saliency; STB � the saliency toolbox;
SUN � saliency using natural statistics.

Figure 13. ROC curves for our proposed LATEST model and all eight
evaluated salience models, with false alarm rate calculated using a biased
random baseline.
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correspondence between fixation selection and the pixels that the
models predict as being the most likely candidates for selection—
LATEST performs considerably better than other models.

However, at high false alarm rates, when the threshold includes
high proportions of pixels as predicted target locations, LATEST
performs worse than other models and indeed for very high false
alarm rates (for thresholds approaching 100% in the binary pre-
diction maps) LATEST performs worse than our biased random
baseline samples. It is important to consider the implications and
source of the poor performance of LATEST at high false alarm
rates. Essentially, these results likely arise from a small subset of
fixations that the model is particularly bad at predicting. By
applying a high threshold we can reveal the locations that the
model predicts are the least likely to be targeted by the outgoing
saccade (Figure 14, top).

The prediction maps shown in Figure 14 (top) suggest that
the poor performance of the model at high thresholds might

arise from its inability to predict a subset of outgoing saccades
that reverse direction and have an amplitude of up to or slightly
beyond the incoming saccade. To test whether the unusual
shape of the ROC curve plotted in Figure 13 derives from the
model’s particular difficulty with this subset of saccades, we
considered how the model performed when they are removed.
We evaluated two approaches for removing the problematic
saccades. First we used a simple heuristic of removing outgoing
saccades that were within 20 angular degrees of a complete
reversal in direction to that of the incoming saccade and that
had an amplitude less than 110% of that of the incoming
saccade. This simple approach removed 8.69% of the dataset
and resulted in the improved model performance seen in Figure
14 (bottom left), corresponding to an AUC of 0.6873. Second,
we used a 95% threshold (like the prediction maps depicted in
Figure 14) to identify outgoing saccades that LATEST failed to
predict at this threshold and then excluded these saccades from

Figure 14. The top rows show 95% threshold binary prediction maps for five fixations. These plots suggest that
the model considers saccades that reverse direction and land between the current and previous fixation location
to be associated with particularly low decision rates and thus under a single framework for predicting spatial
selection from temporal accumulation of evidence, these will be locations that the model predicts as highly
unlikely to be selected. The bottom left panel shows ROC curves for all models after removing saccades that
reverse direction and land between or close to the previous fixation (see text for exclusion criteria). The bottom
right panel shows ROC curves for all models after removing those saccades that landed in the 5% least likely
pixels in the predicted spatial selection maps generated from LATEST. See the online article for the color version
of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

285LATEST



all evaluations of the model (at all thresholds). This second
approach removed 7.5% of the dataset and resulted in the ROC
curves shown in Figure 14 (bottom right), corresponding to an
AUC of 0.7354. For fairness, the eight salience models were
evaluated again for each of these two methods, excluding the
same saccades from their evaluations. Thus the ROC curves
plotted for the salience models in Figure 14 are for model
performances for data sets with the same saccades excluded as
were excluded for the LATEST model evaluations. These plots
support our suggestion that it is this small subset of saccades
that poses particular problems for the spatial predictions of
LATEST and without their inclusion the model performs very
well at predicting the remaining saccades that our observers
made when viewing the images in our study.

Discussion

When compared with a range of existing saliency models,
developed to explain spatial selection in scene viewing, our pro-
posed model performed well. This is particularly remarkable given
that the weights for information that contributed to the decision
maps in our model were derived from a linear mixed model
describing factors that influence fixation duration in scene view-
ing. The fact that a model describing fixation duration offers a
powerful description of spatial selection has two key implications
for our understanding of saccade generation in scene viewing.
First, it provides a challenge to existing frameworks that have
proposed separate mechanisms for selection in space and time in
scene viewing (e.g., Findlay & Walker, 1999; Nuthmann et al.,
2010). We propose that a single underlying decision mechanism
can explain both where we look and when we move our gaze,
providing a more parsimonious account of saccadic selections in
space and time than previous models. Second, it confirms that our
theoretical proposal that saccade timing decisions reflect Stay-
or-Go evaluations, with multiple racing decision processes across
scenes, is a suitable way to conceptualize saccadic decisions in
space and time.

We did find, however, a small subset of fixations that LATEST
struggled to predict. These saccades may highlight a limitation of
the manner in which we have implemented our model, such as an
inappropriate account of effects of changes in direction (which we
modeled as a linear effect, interactive with incoming and outgoing
saccade amplitude). However, allowing higher order (quadratic
and cubic) effects of change in saccadic direction did not improve
the fit of the model. Alternatively, our findings might suggest that
decisions to move the eyes to these locations are governed slightly
differently from how we have implemented our model. One pos-
sibility is that these locations that fall between the current and
previous fixation have an increased prior or starting activation
level. An increase in the starting activation level at these locations
would mean that Stay-or-Go decisions reached the threshold like-
lihood ratio for deciding to move the eyes quicker than expected
for a predicted decision rate, thus increasing the probability that
these locations would reach threshold before others and be targeted
by the next saccade. An increase in the prior at these locations
might arise from spillover of processing from the previous fixa-
tion.

Part IV: Early Saccades and the Maverick Unit

So far in this paper we have focused our modeling efforts on the
main population of saccades, excluding saccades that terminate the
subpopulation of very short duration fixations. Saccades after very
short fixations are often referred to as early saccades because they
are capable of terminating the fixation earlier than would have
happened based on accumulating evidence for a decision by the
main decision unit.

We have focused on the main unit saccades because in
LATEST, the assumption is that it is only the main unit that uses
visual information for evaluating decisions about when to move
gaze. Very short duration fixations arise because of a maverick
decision unit that races with the main unit, but is not based upon
detailed visual processing; rather these decision times arise from a
signal that rises to threshold with a rate drawn randomly from a
distribution with a mean of zero but high variance; but the fact that
they are activated at all may well depend on the existence of some
kind of crude visual input at that location complicating their
interpretation. Nearly all our knowledge of these early saccades
has come from studying responses to single targets in evoked
tasks, which cannot provide enlightenment on this point. Here in
Part III we offer a first exploration of this set of early saccades in
complex scene viewing.

If LATEST provides an appropriate means to characterize all
saccades, we can use it to make and test predictions about the very
fast population of saccades. First and most importantly, decision
rates for these saccades should not be under the influence of visual
information processing at fixation or at the intended target loca-
tion. We should also expect that where these saccades land should
also differ from saccades generated by the main decision unit.

To characterize temporal and spatial selection for saccades
following very short duration fixations we used the same proce-
dure outlined for the main unit and illustrated in Appendix Figure
A3. To ensure that the selected fixations were very unlikely to
have been generated by the main decision unit, we set a criterion
probability of 80% that the fixation duration was terminated by a
saccade from the maverick LATER unit. This process allowed us
to identify 16,016 fixations for subsequent analyses.

We ran a linear mixed effects model of the same form as that
used to analyze our main population of fixations, with the same
fixed and random effects being used to predict decision rate. As
before we first ran a model using all fixed effects and then reduced
the model in stepwise fashion until we had removed as many fixed
effects as possible without significantly changing the overall fit of
the model. Table 3 shows the outcome of this modeling process for
both the full and reduced version of the model.

It is clear from Table 3 that fixed effects relating to visual
information in the scenes (edges, salience and semantics) both at
fixation and target locations had no significant influence on deci-
sion rate. This result is entirely consistent with our assertion that
these short fixations arise from processes that are unrelated to
visual information processing at the fovea or peripheral target
location. Decision rate was, however, influenced by fixed effects
related to the amplitudes and directions of saccades around the
very short duration fixations and to ordinal fixation number (see
Figure 15). For ordinal fixation number, incoming saccade ampli-
tude and outgoing saccade amplitude, the effects on decision rate
are essentially opposite to those for the main unit (see Figure 7).
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This was not the case for the effect of change in direction between
the incoming and outgoing saccades, where the same direction of
effect can be seen for the early saccades as for the main population
of saccades.

To consider where early unit saccades target, we first compared
spatial distributions of these saccade end points to the end points
of saccades generated by the main unit. Logically, it might be
expected that if very short duration fixations arise because they are
terminated by randomly generated saccades from the maverick
decision unit, the distribution of end points of these saccades
should itself be random and thus less clustered than the end points
of saccades generated by the main decision unit. This was not what
we observed (see Figure 16) and indeed the entropy of the prob-
ability distributions for early saccades was less than that for main
unit saccades: creating probability distributions using Gaussians
with full width at half maximum of two degrees, entropy was
significantly lower for the early saccades than for the main sac-
cades, z � 4.79, p 	 .001, suggesting more clustering (or at least
peakier distributions) for saccades generated by the early decision
unit than by the main decision unit.

Not only were distributions of saccades generated by the early
unit more clustered, but the locations targeted were on average of
higher semantic informativeness than main unit saccades. A
GLMM to predict whether a location was targeted by an early unit
saccade or main unit saccade showed effects of semantic informa-
tiveness, t � 3.5, p 	 .001, salience, t � �2.57, p � .010, and

edges, t � �2.16, p � .030, with early saccades targeting regions
of higher semantic informativeness but lower salience and edge
content than main unit saccades. This result is contradictory to our
expectations and suggests that there is more to the population of
very short duration fixations than merely random saccade gener-
ation.

One possible explanation of the observed spatial clustering in
the end points of saccades following very short fixations is that
some of them are correction saccades, bringing the fovea to bear
upon the target initially intended, but missed, by the preceding
saccade. Correction saccades are often observed in laboratory-
based paradigms that require the eye to be directed to small
peripheral targets. In such paradigms the eyes typically land short
of the intended target, and a small corrective saccade ensues to
bring the fovea to bear upon the target (Abrams, Meyer, & Korn-
blum, 1989; Becker, 1972, 1991). These corrective saccades tend
to be small, with initial saccades falling about 10% short of the
distance required to move to the peripheral target, and to be made
in the same direction as the initial saccade. If the observed early
saccades in our dataset are corrective saccades then we should be
able to identify these from their amplitudes (they should be very
small) and the change in direction between incoming and outgoing
saccades (they should continue in the same direction).

The distributions of how much the direction of a saccade devi-
ates from the saccade immediately preceding it differed for early
and main saccades, z � 25.30, p 	 .001, with early saccades more

Table 3
Output of LMM Models to Predict Decision Rate in the Early Population of Saccades

Fixed effects

Full model Minimal model

Estimate SE t Estimate SE t

(Intercept) 8.4991 .151 56.23��� 8.4927 .151 56.17���

Ordinal fixation number .0963 .031 3.14��� .1076 .030 3.59���

Change in direction between saccades �.1530 .031 �4.91��� �.1558 .031 �5.02���

Incoming saccade amplitude (linear) �.5902 .085 �6.91��� �.5696 .084 �6.80���

Incoming saccade amplitude (quadratic) .3908 .084 4.63��� .3744 .084 4.47���

Outgoing saccade amplitude (linear) �.1727 .095 �1.82 n.s. �.1325 .093 �1.43 n.s.
Outgoing saccade amplitude (quadratic) .2197 .100 2.20��� .1818 .098 1.85 n.s.
Change in direction � Incoming saccade amplitude (linear) �.1273 .082 �1.55 n.s. �.1285 .082 �1.56 n.s.
Change in direction � Incoming saccade amplitude (quadratic) .1950 .082 2.37� .1953 .082 2.37�

Change in direction � Outgoing saccade amplitude (linear) �.2091 .088 �2.36� �.2156 .088 �2.44�

Change in direction � Outgoing saccade amplitude (quadratic) .2624 .090 2.90�� .2741 .090 3.04��

Edge information at fixation �.0060 .032 �.18 n.s. — — —
Edge information at target location �.0011 .032 �.04 n.s. — — —
Edge information at target location � Outgoing saccade amplitude .0206 .032 .65 n.s. — — —
Salience at fixation �.0028 .035 �.08 n.s. — — —
Salience at target location .0133 .034 .40 n.s. — — —
Salience at target location � Outgoing saccade amplitude .0015 .033 .05 n.s. — — —
Semantic interest at fixation �.0385 .034 �1.14 n.s. — — —
Semantic interest at target location �.0283 .033 �.87 n.s. — — —
Semantic interest at target location � Outgoing saccade amplitude .0270 .032 .84 n.s. — — —
Random effects variance

Subjects 1.526 1.529
Scenes 	.001 	.001

Log-likelihood �43916.929 �43896.767
Deviance 87833.857 87793.534
AIC 87879.857 87821.534
BIC 88056.528 87929.073
N 16016 16016

Note. Results are shown for the full model containing all evaluated fixed effects and for the most reduced version of the model.
� p 	 .05. �� p 	 .01. ��� p 	 .001.
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frequently continuing in the direction of the incoming saccade than
was the case for the main population of saccades (Figure 17a).
Small (	2 degrees) and large (�4 degrees) amplitude early sac-
cades differed in their distributions of change in direction, z �
20.55, p 	 .001, with small amplitude outgoing early saccades
being more likely to continue in the same direction (
22.5 de-
grees) as the incoming saccade (Figure 17b). Furthermore, early
saccades that did continue in the same direction as the previous

saccade were more frequently of smaller amplitude than those that
did not continue in the same direction, z � 20.03, p 	 .001 (Figure
17c).

Collectively, these observations are consistent with the possi-
bility that there is a subset of saccades within the population that
we are referring to as ‘early saccades’ that conform to the char-
acteristics that would be expected for corrective saccades. This
subset is likely to be quite small: 3858 early saccades had ampli-
tudes of less than 2 degrees, of which 1295 were under 1 degree in
amplitude; expressed as a percentage of the incoming saccades,
1299 saccades were of an amplitude less than 20% that of the
incoming saccade, or which 330 were of an amplitude of less than
10% of the incoming saccade; in terms of the change in direction
between incoming and outgoing saccades, 3854 outgoing early
unit saccades continued in approximately the same direction as the
incoming saccade (
22.5 degrees). Combining criteria of ampli-
tude (	2 degrees) and direction (within 22.5 degrees of the in-
coming saccade) identified 1219 of the 16,016 early saccades.

Corrective saccades should be under different control to other
early saccades. Specifically, if corrective saccades function to
bring the eye to the intended target of the incoming saccade,
whereas other early saccades are more randomly directed, these
two sets of early saccades should target locations that are quanti-
fiably different in content. One way to test this is to see whether
the target locations for corrective and noncorrective early saccades
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Figure 15. Partial effects for (a) ordinal fixation number, (b) change in saccade direction, (c) previous saccade
amplitude, (d) next saccade amplitude on decision rates in scene viewing for the subpopulation of very short
duration fixations. Shaded regions indicate 95% confidence intervals.

Figure 16. Distributions of end points for saccades likely to have been
generated by the main decision unit (yellow/light dots) or the maverick,
early decision unit (blue/dark dots) for five example images. See the online
article for the color version of this figure.
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differ in terms of their edge, salience and semantic content. A
GLMM to predict type of early saccade (corrective vs. not-
corrective) showed effects of semantics, t � 9.55, p 	 .001, edge
information, t � 4.31, p 	 .001, and salience, t � �1.98, p �
.048, at the target location. These results show that corrective
saccades targeted locations of higher semantic and edge informa-
tion but lower salience than did other early saccades. Not only
were corrective saccades differently distributed with respect to
visual information in the scene, but also their timing was influ-
enced by different factors. We ran LMMs to predict decision rate
for corrective and noncorrective early saccades using the same
fixed effects as in previous models in this paper (see Table 4). It
should be noted that the selection criteria for differentiating cor-
rective and noncorrective saccades limit the range of values in
fixed effects describing outgoing saccade amplitude and change in
direction. We found that the timing of corrective saccades was
influenced only by an interaction between semantic information at
the target location and the eccentricity of that target location. For
peripheral targets of low semantic interest, there was little influ-
ence of retinal eccentricity on saccade timing; however, for pe-
ripheral targets of high semantic interest, saccades were initiated
faster as eccentricity increased from 0.5 to 2 degrees (see Figure
18). In contrast, for noncorrective early saccades, timing was
influenced by fixation number, change in direction and incoming
saccade amplitude, but not any factors related to visual information
in the scene.

Taken together, and using our rather crude way of identifying
candidate corrective saccades, we can suggest that small amplitude
saccades that continue in the same direction as the incoming
saccade (our candidate corrective saccades) differed from other
early saccades in terms of the factors that influence their timing
and the visual information that they selected in the scene. Correc-
tive saccade timing depended on semantic information at the
intended peripheral location and these saccades targeted locations
with higher semantic and edge content than other early saccades.

After identifying the likely presence of corrective saccades
within the population of early saccades, we can reconsider the
question of whether spatial selection in this population is as would

be expected for a maverick decision process. Above, we reported
that early saccades targeted regions of higher semantic interest, but
lower salience and edge content. If we remove the candidate
corrective saccades, the remaining early saccades do not target
locations of higher semantic informativeness than main unit sac-
cades: indeed, a GLMM showed that noncorrective early saccades
and main unit saccades targeted locations that did not differ in
semantic informativeness, t � 0.40, p � .690, or salience,
t � �1.87, p � .062; however, noncorrective early saccades did
target locations of lower edge content than main unit saccades,
t � �3.20, p � .001.

The destinations of saccades are not the only potential diagnos-
tic marker of whether these early saccades are generated from a
maverick decision signal. In evoked tasks, whether or not the
maverick unit is triggered at all depends upon the information
processing demands at the fovea: with more frequent early sac-
cades in gap paradigms where there is no central processing
demand at target onset compared with step tasks where processing
demand continues until target appearance (Story & Carpenter,
2009). It is therefore likely to be that case that factors that con-
tribute to the Stay component of our Stay-or-Go evaluation should
reduce the frequency of early saccades. If this is the case then we
should find that early saccades in our dataset were launched from
locations with weaker Stay signals than main unit saccades. This is
what we found: noncorrective saccades were launched from loca-
tions of lower semantic informativeness, t � 17.14, p 	 .001,
salience, t � 4.83, p 	 .001, and edge content, t � 4.93, p 	 .001,
than main unit saccades.

Our data suggest that once we have removed the likely correc-
tive saccades from our population of saccades following very short
fixation durations, the remaining early saccades are consistent in
their timing and spatial selection with what would be expected for
a maverick decision process.

Part V: General Discussion

We have shown that fixation durations when viewing images of
natural scenes can be well described as reflecting the time taken to
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Figure 17. (a) probability density function for the angular change in direction between incoming and outgoing
saccades for those likely to have been generated by the early unit and main unit. (b) Change in direction between
incoming and outgoing saccades for fixations likely to have been associated with the early unit, split by outgoing
saccade amplitude. (c Outgoing saccade amplitudes for early unit saccades, split according to whether the
outgoing saccade continued in the same direction as the incoming saccade (
22.5 degrees) or did not continue
in the same direction (�22.5 degrees from incoming saccade direction).
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accumulate sufficient evidence regarding visual information in the
scene to support a decision to move the eyes. More precisely, the
decision to move the eyes appears to be the result of a comparison
between competing Stay and Go hypotheses: each unit evaluates
the evidence in favor of moving to a peripheral location relative to

staying at the currently fixated location. This framing is supported
by our finding that visual information both at foveation and at the
intended peripheral location contribute to decision time, but in
opposite directions: increased visual information at fixation pro-
longs fixation time whereas at the peripheral target it reduces it.

We used LATER as our underlying decision model because it
offers a simple but powerful decision mechanism that describes
decisions as arising from the likelihood ratio of two competing
hypotheses. As is common in LATER modeling, in addition to this
‘rational’ decision process that entails scrutiny and processing of
visual information in the scene, we included another that produces
few but unusually short fixation durations (early saccades: a prom-
inent feature both of reading and nystagmus) that is likely to arise
(mainly) from a maverick decision process that is relatively unaf-
fected by visual stimulation.

LATER was developed as a two-parameter model of the distri-
bution of RTs in a simple RT task and relates this to what would
be expected of an ideal Bayesian process. Subsequently, it was
shown that such units, acting in parallel and corresponding to
different peripheral targets, can explain behavior in choice tasks
(for a review see Noorani & Carpenter, 2016), and other more
complex ones such as antisaccade tasks and, in at least one
preliminary investigation, fixation durations in spontaneous visual
scanning (Roos et al., 2008). Although this work gives credence to
the idea that LATER-like decisions are appropriate for understand-
ing saccade timings during scene viewing, it is important to note

Table 4
Output of LMM Models to Predict Decision Rate in the Early Population of Saccades, for Those Saccades Identified as Likely to be
Corrective and Those That are Unlikely to be Corrective Saccades

Fixed effects

‘Corrective’ saccades Other early saccades

Estimate SE t Estimate SE t

(Intercept) 8.3521 .201 41.52��� 8.4019 .144 58.53���

Ordinal fixation number �.0899 .108 �.83 n.s. .1202 .037 3.24���

Change in direction between saccades �.0765 .104 �.74 n.s. �.1137 .037 �3.04���

Incoming saccade amplitude (linear) �.5547 .323 �1.72 n.s. �.6412 .099 �6.50���

Incoming saccade amplitude (quadratic) .3363 .319 1.05 n.s. .5053 .097 5.23���

Outgoing saccade amplitude (linear) �.3808 .691 �.55 n.s. �.1025 .135 �.76 n.s.
Outgoing saccade amplitude (quadratic) .4004 .692 .58 n.s. .2134 .139 1.53 n.s.
Change in direction � Incoming saccade amplitude (linear) �.2442 .298 �.82 n.s. �.0708 .094 �.75 n.s.
Change in direction � Incoming saccade amplitude (quadratic) .0967 .284 .34 n.s. .1100 .093 1.18 n.s.
Change in direction � Outgoing saccade amplitude (linear) .0271 .695 .04 n.s. .0764 .133 .58 n.s.
Change in direction � Outgoing saccade amplitude (quadratic) �.0185 .691 �.03 n.s. .0706 .138 .51 n.s.
Edge information at fixation �.0650 .127 �.51 n.s. .0563 .038 1.47 n.s.
Edge information at target location .0116 .125 .09 n.s. �.0094 .038 �.24 n.s.
Edge information at target location � Outgoing saccade amplitude �.0231 .114 �.20 n.s. .0219 .038 .58 n.s.
Salience at fixation �.0435 .192 �.23 n.s. �.0204 .039 �.52 n.s.
Salience at target location �.1299 .187 �.70 n.s. .0423 .039 1.08 n.s.
Salience at target location � Outgoing saccade amplitude �.0696 .106 �.66 n.s. �.0526 .039 �1.34 n.s.
Semantic interest at fixation �.0676 .172 �.39 n.s. �.0206 .039 �.53 n.s.
Semantic interest at target location .0153 .160 .10 n.s. �.0019 .038 �.05 n.s.
Semantic interest at target location � Outgoing saccade amplitude �.2468 .111 �2.22� .0215 .038 .57 n.s.
Random effects variance

Subjects 1.546 1.338
Scenes .247 	.001

Log-likelihood �3326.821 �25481.16
Deviance 6653.641 50962.31
AIC 6699.641 51008.31
BIC 6817.074 51173.03
N 1219 9523

� p 	 .05. �� p 	 .01. ��� p 	 .001.

Figure 18. The interaction between outgoing saccade amplitude and
semantics at the target location for corrective saccades. As the semantics at
the peripheral location increases, the negative effect of eccentricity on
decision rate increases.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

290 TATLER, BROCKMOLE, AND CARPENTER



that LATEST and LATER differ considerably. LATER is strictly
a model of (saccade) latency which has never been used to predict
saccade end points, employs a decision unit that only evaluates
information at peripheral locations, and has never been used to
characterize the contribution of different forms of information in
scenes (or for that matter the oculomotor variables we explore) on
decision rate. In stark contrast, LATEST is able to explain both
when and where people look in scenes, frames these decisions as
evaluations between hypotheses derived from information in
central vision (Stay) and information at a peripheral location
(Go), and considers a wide range of visual, oculomotor, and
cognitive factors that are known to influence gaze control
during scene viewing.

LATEST: A Single Model for Saccadic Decisions in
Space and Time

Conceptualizing the underlying decisions in our model as aris-
ing from Stay-or-Go evaluations makes the strong prediction that
such a decision framework should not only describe when the eyes
move but also where. More specifically, each location in periph-
eral space would carry out its own Stay-or-Go evaluation: the
location in space associated with the fastest log odds for this
evaluation should be the location targeted by the next saccade.
Thus factors that modulate saccade timing should modulate spatial
selection, and the model we have proposed to account for saccade
timing should also account for where people look. Because the
decision processes that underpin LATEST are intrinsically sto-
chastic, with ‘deliberate’ built-in randomness of timing, the pre-
dictions of the model must necessarily be of average behavior
rather than being exact for every single saccade.

Our findings support the theoretical assertions that underlie
LATEST: a spatial selection model based on the outcome of our
decision rate model offers a good account of where people look
during viewing. Saccades target locations that fall within regions
associated with the fastest predicted Stay-or-Go decision pro-
cesses. Overall, LATEST performed at a level equivalent to the
best of the existing spatial selection models that we evaluated,
which were drawn from among the best performing contemporary
models of fixation selection. When we set the threshold on our
binary prediction maps to predict only the most likely locations to
be fixated, LATEST far outperformed all tested spatial selection
models (outperforming these models for thresholds up to 35% of
the most likely locations in the image). That the overall perfor-
mance of LATEST was on a par with the best of the evaluated
spatial selection models rather than beyond them was because
LATEST performed less well at accounting for a small subset of
saccades that brought the eye to locations between the current and
previous location that were better predicted by other models. When
this small subset of fixations was removed, LATEST far outper-
formed all other models we evaluated.

LATEST, therefore, is the first account of fixation selection that
explains where we look and when we move our eyes as arising
from the same underlying process. All previous models have
treated the decisions about when to move the eyes and where to
look as separate processes arising from different underlying mech-
anisms.

Early Saccades: Mavericks or More?

Although the main population of fixation durations had decision
rates that were modulated by visual factors at the current and
intended target locations, this was not the case for the small
population of ‘early’ saccades mentioned earlier, that can be at-
tributed to a maverick decision unit that races against the main
decision process. This maverick unit draws randomly from a
distribution of rates of rise with large standard deviation and a
mean of zero. As such, the maverick process rarely wins the race,
but when it does so, it triggers a saccade after an unusually short
period of time. If the short duration fixations observed in our scene
viewing data arose from such a maverick decision process, then
their timing might be expected to be unrelated to visual informa-
tion at fixation or at the targeted peripheral location. However,
although their timing is extremely random, the fact that they are
evoked at all in respect of a particular location is undoubtedly
stimulus-related, at least in the case of evoked saccades. Exami-
nation of the spatial distribution of locations targeted by these
early saccades suggested that some of these saccades were more
likely to be corrective, bringing the eyes to locations of higher
semantic interest, rather than random. Separating out early sac-
cades that look like corrections from the rest showed that the
timing and spatial selection of our putative corrections correlated
with visual information at the targeted location, whereas timing
and spatial selection for the remaining early saccades did not. Thus
we suggest that our observed population of early saccades com-
prised at least two different types of saccades: a minority of
saccades that were consistent with what would be expected of a
corrective saccade (see Abrams et al., 1989; Becker, 1972, 1991)
and a majority of saccades that were consistent with what would be
expected for a maverick saccade generation process.

Explaining very short duration fixations in this way sets
LATEST aside from other models that have attempted to explain
this aspect of viewing behavior, which have required the inclusion
of saccade programming time, part of which is uninterruptible
(Becker & Juergens, 1979; Nuthmann et al., 2010). LATEST
avoids the need to include a programming phase, a phase that
seems unnecessary given neurophysiological evidence (Robinson,
1972; Sparks, 1986; Sylvestre & Cullen, 1999; Büttner et al.,
1977).

Having a maverick saccadic decision process that competes with
decisions based on online visual processing of the scene seems like
a somewhat unintuitive component of natural scene viewing. This
decision process will necessarily interrupt the main process that
underlies decisions about when and where to move the eyes. Such
interruptions to scene processing and inspection might be consid-
ered as unhelpful for scene exploration and understanding. How-
ever, randomness in eye movement behavior need not be disrup-
tive and indeed may be advantageous (Carpenter, 1999), and it is
important to recollect—as mentioned earlier—that it is not just the
early saccades that are random: the main decision process has
randomness intrinsically built into it. In a competitive situation, the
resulting randomness of timing will necessarily cause random
selection of the final target. In the context of scene viewing, this
will serve to bring the eyes to locations that would otherwise be
less likely to be targeted by the main mechanisms controlling
saccadic decisions, which may turn out to be unexpectedly useful.
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A maverick process will add to this fundamentally stochastic
mechanism for more venturesome scene exploration.

The Language of Decisions in LATEST

In this paper we have described the relative weights of a range
of underlying factors in saccadic decision time and shown that
applying these weights to predict latency to locations in scenes
provides an effective model of spatial selection in scene viewing.
However, we do not propose that the set of weights identified in
the present work are a fixed set of weights for describing saccadic
decisions in other situations. That is, we do not expect these
particular weights to explain saccadic decisions in other tasks.
Rather, we suggest that the underlying theoretical proposal of
posing saccadic decisions in space and time as Stay-or-Go decision
processes to evaluate the merit of moving to a new location
relative to maintaining fixation on the current foveal target are
appropriate and generalizable. However, the relative importance of
different sources of information in evaluating these decisions is
likely to depend upon what task the viewer is asked to perform.

In this way, when conceptualizing the peaks and troughs in the
LATEST decision maps they should not be considered as neces-
sarily reflecting any particular form of visual information in the
scene. Rather these peaks arise from the evaluation of the Stay-
or-Go decision at each location, and will reflect the visual infor-
mation that is relevant to the demands of the current task. By
framing each decision as a Stay-or-Go evaluation, and by acknowl-
edging that the information that contributes to these evaluations
will vary depending upon the task of the observer, our proposed
decision maps can be seen as fundamentally goal-related, yet
modulated at the same time by what is at the current point of
fixation. If the content of the map reflects the evidence in favor of
anticipated behavioral benefit for moving to each location, relative
to maintaining fixation, the map we describe is very similar to a
map of anticipated behavioral reward. The possibility that target
selection might arise from such a map has been receiving consid-
erable interest in the field (see Tatler et al., 2011, for a review and
discussion).

The eye movement circuitry is sensitive to reward (Dorris
& Glimcher, 2004; Glimcher, 2003; Glimcher & Fehr, 2013; Platt
& Glimcher, 1999; Stuphorn, Taylor, & Schall, 2000; Stuphorn &
Schall, 2006; Sugrue, Corrado, & Newsome, 2004). Furthermore,
external manipulations of reward (e.g., monetary reward) influence
manual and oculomotor behavior in a manner that appears to
maximize reward (e.g., Seydell, McCann, Trommershäuser, &
Knill, 2008; Stritzke, Trommershäuser, & Gegenfurtner, 2009;
Trommershäuser, Maloney, & Landy, 2003). Given that behav-
ioral goals require visual information for their completion, visual
information in itself is a behavioral reward, and in evoked tasks
distributions of saccadic latencies shift in manners that suggest that
the underlying evaluation reflects the anticipated reward associ-
ated with saccading to a target (Bray & Carpenter, 2015). Naval-
pakkam, Koch, Rangel, and Perona (2010) showed that visual
search behavior can be well explained by a Bayesian optimal
observer that accounts for reward and stimulus detectability.
Reward-based models of gaze selection have been proposed (Bal-
lard & Hayhoe, 2009; Rothkopf & Ballard, 2009; Rothkopf, Bal-
lard, & Hayhoe, 2007) and have been used successfully to model

goal directed behavior in virtual reality (Sprague, Ballard, &
Robinson, 2007).

Where our suggestion departs from the reward-based models
suggested by Ballard and colleagues is that they suggest that
anticipated reward is calculated across all subtasks (which are tied
to spatial locations) and the winner receives fixation. In contrast,
we suggest that each location is associated with an independent
decision about whether it will benefit the viewer to move their eyes
to that location rather than maintain fixation at the current location.
Each of these independent decision processes then races to thresh-
old and the winner receives the next fixation. In many ways the
end result will be very similar in these two accounts, but the
underlying decision process is very different. A further departure
is that in the model suggested by Sprague et al. (2007), decisions
are based on a snapshot evaluation of anticipated reward made
every 300 ms whereas in LATEST the temporal evolution of the
supporting evidence in favor of moving the eyes to each location
is fundamental to the model and is what drives the eventual
selection in space and time.

Any decision map that is based on anticipated behavioral benefit
for making a particular eye movement has the advantage that the
evidence that contributes to the decisions need not be fixed, but
can vary depending upon the task demands. Indeed, we make no
assumptions as to the nature of the evidence that contributes to the
Stay and Go hypotheses that are evaluated for each decision under
LATEST. The evidence can therefore take the form of anything
from basic low-level features, through intermediate-level struc-
tures such as objects, to high-level semantics and goal-relevance.
A key aim for future work is to explore what information may
contribute evidence to the evaluation of saccadic decisions across
variations to task and stimuli.

Next Steps for LATEST

LATEST is a first step toward better understanding the decision
processes that underlie spatiotemporal selection in scene viewing,
and future work will need to consider a number of issues.

Our linear mixed models necessarily use a limited range of
factors. Further developments of the model should consider other
informational and strategic factors in scene viewing. A particular
candidate for improvement is to consider a greater range of de-
scriptions of visual information in scenes. Our current implemen-
tation of semantic interest is restricted to data from observers
performing a rating experiment, partly because of the context of a
general memorization task. A better-defined viewing task might
offer a more objective measure of higher level information in
scenes: for example, when searching for people, computational
people detectors offer an appropriate description of task-relevant
high level information in scenes (e.g., Ehinger et al., 2009; Tor-
ralba et al., 2006). Further levels of description might also benefit
our ability to describe fixation duration. A particular omission
from the present model might be the lack of object-level descrip-
tion of scene content. It is increasingly clear that object-level
descriptions are important components of models of spatial selec-
tion (e.g., Einhäuser et al., 2008; Wischnewski et al., 2010).

Future work should consider the level of description of scene
content at which Stay-or-Go evaluations are organized and calcu-
lated. At present, we calculate expected decision rate for every
pixel in the image. Basing a model on the arbitrary and artificial
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unit of a pixel in an image is of course unrealistic. But this raises
the question about what spatial granularity is appropriate for the
multiple racing Stay-or-Go decision processes proposed in
LATEST. In line with recent suggestions that it may be more
appropriate to model spatial selection as being organized around
objects rather than pixels in models of eye guidance in scene
viewing (Nuthmann & Henderson, 2010), we could propose that
the LATEST Stay-or-Go evaluations are calculated at each object
in the scene. However, there are some advantages to a framework
that is blind to such high-level segmentation in scenes: specifi-
cally, objects themselves may not always be the unit around which
selection is organized. For example, in some circumstances, an
optimal strategy for information sampling is to fixate locations that
fall between objects. Such strategies are seen in expert chess
players viewing chess boards (Reingold & Charness, 2005), search
behavior (Zelinsky, Rao, Hayhoe, & Ballard, 1997) and can be
important strategic components of models of search (Zelinsky,
2012). Thus although using pixels as the unit of calculation is
entirely arbitrary, for describing the locations at which Stay-or-Go
decisions are evaluated in a manner that is blind higher-level scene
structure may be useful.

As a model of screen-based scene viewing, LATEST could be
improved by taking better account of known constraints that op-
erate when viewing images on screens. It is important to remember
that we constructed our model from data gathered while people
look at images on a computer screen and as such what we describe
is a model of this situation not of all viewing settings. Screen-
based viewing is necessarily bounded by the frame of the monitor
on which the scene is displayed and this will impart particular
constraints upon inspection behavior. Not only does screen-based
viewing involve a marked bias for observers to fixate near the
middle of the scene irrespective of its content (Tatler, 2007), but
also fixations are (unsurprisingly) rarely made to locations outside
the screen (0.35% of fixations in our dataset). These boundary
constraints on viewing mean that the likelihood of a saccade being
followed by another in the same direction will depend upon where
in the scene the saccade lands: saccades that land close to an edge
of the scene are necessarily less likely to be followed by contin-
uations in the same direction. Taking into account where on the
screen saccades are launched from when modeling image-
independent biases in scene viewing greatly improves the ability to
describe eye movement data (Clarke et al., in prep). In its present
form, LATEST accounts for information content at the saccade
launch site, but is ignorant of these screen-position-contingent
viewing constraints and will thus underestimate the probability of
changing direction after a saccade that brings the eye close to a
screen boundary. It is likely that taking better account of these
viewing constraints would improve the fit of the model. However,
the aim of the present work was not to produce a model that is
tuned to best describe screen based viewing. Rather, the aim was
to consider whether an account of saccade timing will also provide
an account of spatial selection to evaluate the suitability of
LATER-like decision processes for explaining both when and
where we move the eyes.

Conclusion

In this paper we proposed a new theoretical framework for
explaining both when and where people move their eyes when

viewing images of real world scenes. It is based on a Stay-or-Go
decision process that evaluates the relative merits of moving to a
new location or maintaining the current fixation. We implemented
and tested this framework by developing an empirically based
model of gaze control called LATEST. This model turned out to
predict spatial selection better than a range of previous models.
Our data therefore suggest that there is no need to suppose separate
mechanisms that determine where the eyes will travel and when
they will travel there. Instead, saccadic decisions both in space and
also in time can be explained as arising from a common underlying
Stay-or-Go decision process.
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Figure A1. A1 A set of 5000 simulated response latencies (rate of rise for decision signal: � � 5, � � 1)
plotted as a conventional frequency histogram (a), showing the obvious skewness of the distribution. (b) the same
data plotted using a reciprocal sale for latency: note that for convenience the latencies still increase to the right.
The distribution is now relatively symmetrical, and indeed similar to a Gaussian. (c) The same data as in (a)
plotted as a cumulative histogram, using a probit scale that stretches the ends of the ordinate axis in such a way
as to generate a straight line if the data is indeed Gaussian; since the latency uses a reciprocal scale, this is a
reciprobit plot. (d) Human manual responses to a visual stimulus (N � 825; Welford, 1959).

(Appendix continues)
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Figure A2. The 64 images used in this study. See the online article for the color version of this figure.
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Figure A3. (a) Simulated decision rates derived from distribution parameter estimates for a single subject in our
study. These simulations are based on Participant 45 in our dataset, for whom the parameter estimates were: � � 3.73,
� � 1.27, �� � 6.19. These simulated decision rates give rise to the distributions of durations shown in (b). The
overlap between the distributions of durations arising from the main and stochastic units would result in a single
observed population that is the sum of these two distributions. Based on the simulations in (a) and (b) we can calculate
the log-likelihood for a fixation of a given duration (c) and use this to calculate the probability that a fixation of any
given duration was generated by the main decision process (d). The dashed lines in (d) indicate the 0.6 criterion cutoff
we employed to select fixations likely to have been terminated by a saccade generated by the main decision process.
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(Appendix continues)

Figure A4. Reciprobit plots of the distribution of observed fixation durations for each of our 70 participants.
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Table A1
LATER Parameter Estimates for Each Participant

Participant � � ��

1 3.68 1.37 6.14
2 3.89 1.42 7.68
3 3.15 1.11 4.47
4 3.13 1.08 5.17
5 4.04 1.36 7.43
6 4.02 1.34 5.94
7 4.05 1.44 7.16
8 3.90 1.36 5.46
9 3.75 1.35 6.21

10 4.24 1.61 7.07
11 3.92 1.45 5.97
12 3.38 1.37 4.45
13 4.22 1.49 7.07
14 3.75 1.27 6.45
15 4.12 1.50 7.18
16 3.93 1.56 5.58
17 3.87 1.27 5.78
18 4.26 1.55 6.48
19 3.75 1.29 5.15
20 3.77 1.14 3.93
21 3.90 1.53 5.77
22 3.51 1.54 5.05
23 3.95 1.21 5.82
24 3.03 1.10 4.34
25 3.20 1.27 5.06
26 3.84 1.28 5.41
27 3.02 1.25 4.55
28 3.85 1.39 6.19
29 4.53 1.82 7.00
30 3.33 1.42 5.36
31 3.85 1.26 5.41
32 4.01 1.31 5.86
33 4.18 1.69 6.42
34 4.99 1.98 8.70

Participant � � ��

35 4.22 1.41 5.73
36 3.21 1.09 5.37
37 3.40 1.18 5.15
38 4.69 1.43 6.81
39 4.30 1.44 5.55
40 4.04 1.46 7.62
41 4.21 1.68 6.34
42 3.86 1.29 5.62
43 3.68 1.57 6.22
44 4.32 1.47 6.22
45 3.72 1.27 6.19
46 4.07 1.39 7.60
47 3.95 1.56 5.44
48 3.89 1.28 5.23
49 4.23 1.58 6.57
50 3.69 1.30 5.13
51 3.72 1.38 4.82
52 3.49 1.50 6.81
53 4.14 1.59 6.02
54 2.86 1.17 5.79
55 4.63 1.82 1.70
56 3.25 1.13 5.03
57 3.72 1.31 5.23
58 4.08 1.42 5.49
59 3.62 1.40 5.75
60 4.20 1.39 7.85
61 4.09 1.46 5.63
62 3.85 1.35 5.76
63 3.13 1.20 5.96
64 4.08 1.44 5.52
65 4.19 1.69 6.53
66 4.04 1.60 5.68
67 3.88 1.47 7.00
68 3.54 1.51 5.30
69 4.35 1.38 4.97
70 4.30 1.45 4.55
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