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We consider the situation in which a learner must induce the rule that explains an observed set of data
but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the
article demonstrates that as long as hypotheses are sparse (i.e., index less than half of the possible entities
in the domain) then a positive test strategy is near optimal. The second part of this article then
demonstrates that a preference for sparse hypotheses (a sparsity bias) emerges as a natural consequence
of the family resemblance principle; that is, it arises from the requirement that good rules index entities
that are more similar to one another than they are to entities that do not satisfy the rule.
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Uncovering the rules that govern the observations that we make
is a fundamental inductive inference problem, covering many
substantively different domains and several formally distinct learn-
ing problems. In its most general form, the learner must induce the
rule on the basis of a collection of observations and some infor-
mation as to which observations satisfy the rule. Across domains,
this broad problem includes children acquiring grammatical rules
(e.g., Chomsky, 1957), scientists searching for physical laws (e.g.,
Kuhn, 1970; Popper, 1935/1990), people learning rule-governed
concepts (e.g., Bruner, Goodnow, & Austin, 1956), and many
others. In this article we consider the problem of active learning, in
which it is the learner’s responsibility to make queries regarding
the phenomenon of interest in order to uncover the true rule that
describes it. This learning problem has two distinct parts: the
hypothesis generation problem, in which plausible candidate rules
must be proposed, and the hypothesis testing problem, in which
appropriate tests of those hypotheses must be constructed.

The hypothesis testing problem is well studied in the literature
on reasoning and decision making and displays a striking empirical
regularity. In general, people prefer to employ a positive test
strategy, or PTS (Nickerson, 1998; see McKenzie, 2005, for an
overview). The PTS can be characterized as the tendency to ask
questions that will yield an affirmative response if the hypothesis
currently under consideration is true (Klayman & Ha, 1987).
Although it is sometimes difficult to disentangle from the match-
ing bias (Evans, 1972, 1998; Evans & Lynch, 1973; see also

Yama, 2001), the PTS is pervasive. It is observed in rule learning
problems (e.g., Klayman & Ha, 1989; Taplin, 1975; Tweney et al.,
1980; Wason, 1960), the four-card selection task (e.g., Jones &
Sugden, 2001; Wason, 1968), scientific research (e.g., Dunbar,
1993; Mahoney & de Monbruen, 1977; Mynatt, Doherty, &
Tweney, 1978), and many other contexts (Nickerson, 1998). The
bias to use a PTS can be ameliorated in some situations (e.g.,
Cheng & Holyoak, 1985; Cosmides, 1989; Johnson-Laird, Leg-
renzi, & Legrenzi, 1972) but is rarely completely eliminated.
Moreover, although there are some senses in which it represents a
logical error (Johnson-Laird & Wason, 1970; Platt, 1964; Wason,
1960, 1968), the PTS can be a highly effective learning strategy
when certain assumptions are met (Austerweil & Griffiths, 2008;
Klayman & Ha, 1987, 1989; Oaksford & Chater, 1994).

Hypothesis generation is less well studied by comparison but is
presumably tied to the question of what kinds of rules people find
to be a priori more plausible than others. Within the rule-based
categorization literature, for instance, it is typical to assume the
existence of a relevant class of possible rules (Ashby & Gott, 1988;
Erickson & Kruschke, 1998; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Nosofsky, Palmeri, & McKinley, 1994), and there
has long been a recognition that learning involves strategic shifts
in the learner’s choice of hypothesis (e.g., Brown, 1974; Goodnow
& Pettigrew, 1955; Levine, 1959). There has been some explora-
tion of the hypothesis generation problem in more general contexts
than categorization (see Gettys & Fisher, 1979; Gettys, Mehle, &
Fisher, 1986; Koehler, 1994; Thomas, Dougherty, Sprenger, &
Harbison, 2008), usually in isolation from the hypothesis testing
problem. Those studies that have linked the generation problem to
the testing problem have tended to focus on empirical questions
about how people’s strategies for hypothesis formation affect their
overall performance (e.g., Adsit & London, 1997; Farris & Revlin,
1989; Klahr & Dunbar, 1988). There is relatively little work
addressing the theoretical question of which hypothesis formation
strategies should be followed; the closest work that we are aware
of is that of Cherubini, Castelvecchio, and Cherubini (2005), who
presented empirical evidence suggesting that people incrementally
form hypotheses that are informative with respect to observed data.
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In this article we present an analysis of the active learning
problem that considers the hypothesis testing and hypothesis gen-
eration problems together. In the first part of the article, we extend
previous results that derive the PTS as a near-optimal learning
strategy when hypotheses are sparse (i.e., when they index only a
minority of possible entities). In the second, more novel part of the
article, we turn to the hypothesis generation problem and show that
sparsity itself is a consequence of the more basic requirement that
rules correspond to “good” categories. We conclude by discussing
some of the assumptions and simplifications incorporated into this
analysis.

Positive Tests for Sparse Hypotheses

Several studies have suggested that the PTS can be a rational
learning strategy (Austerweil & Griffiths, 2008; Klayman & Ha,
1987; Oaksford & Chater, 1994) as long as one key assumption is
met. All of the formal results invoke some form of sparsity
assumption, in which the hypothesis is consistent with only a
minority of logically possible observations (see McKenzie, 2005,
for a discussion). Although the psychological ideas behind these
results are quite general, they are limited in two respects, both of
which Klayman and Ha (1987) briefly discussed but did not
include in their formal analysis.

First, the derivations all assume that the learner considers only
a single hypothesis at a time. Although there is evidence that
people often do this (e.g., Doherty, Mynatt, Tweney, & Schiavo,
1979; Mynatt, Doherty, & Tweney, 1977; Taplin, 1975), it is not
always the case. Many studies explore how entertaining multiple
hypotheses affects the process of inference, with some finding that
it helps (e.g., Klahr & Dunbar, 1988; Klayman & Ha, 1989), some
finding that it does not (e.g., Freedman, 1992; Tweney et al.,
1980), and some finding that it depends (e.g., Farris & Revlin,
1989; McDonald, 1990). In view of this, it would be useful to
extend the existing formal results to cover the multiple hypothesis
case.

Second, previous derivations analyze the PTS as a method for
uncovering as much information as possible about the learner’s
hypothesis, not as a method for optimally identifying the true rule.
Although these are closely related goals, they are not necessarily
equivalent. If the goal of the learner is to identify the true rule
rather than simply to test the current hypothesis, it is important to
have a formal analysis that explores the effect of different learning
strategies on all of the candidates in the learner’s hypothesis
space—on all of the possible rules that they could consider.

In this section we retain the critical assumption of sparsity but
extend previous results by addressing the two issues discussed
above. That is, we present an analysis that accommodates multiple
hypotheses and derives the PTS in a situation where the goal is to
uncover the correct rule as quickly as possible (rather than extract
information about the current hypothesis). Our results suggest that
the effectiveness of the PTS can change as hypotheses are elimi-
nated and the proportion of hypotheses that is explicitly available
to the learner changes.

The Ideal Learner Case

The kind of active learning problem in which we are interested
is best exemplified by the traditional game of “20 questions.” In

this game, one player (the oracle) thinks of an object, and the other
player (the learner) can pose queries to the oracle. These queries
must be yes-or-no questions, and the oracle must answer truthfully.
Strictly speaking, the learner’s goal in this game is to ask questions
in such a way as to identify the object using 20 questions or fewer,
but in practice the goal is to do so using as few questions as
possible. An interesting variation of the game is the rule learning
task introduced by Wason (1960). The rule learning task differs
from 20 questions in that the oracle thinks of a rule rather than an
object and constrains the allowable queries to be of the form “does
x satisfy the rule?” where x is an object. For example, in one game
the oracle might think of a rule about numbers, such as perfect
squares. The learner’s queries might include items like 7, 15, and
16, to which the oracle would reply “no,” “no,” and “yes,” respec-
tively. In the analysis below, we assume that the learning task is
the Wason variant.

How would an ideal learner approach this game? Following the
approach taken in the formal literature on rule-based categories
(Ashby & Gott, 1988; Erickson & Kruschke, 1998; Goodman et
al., 2008; Nosofsky et al., 1994), we assume that the learner has a
set of (not necessarily explicit) plausible hypotheses H about the
rule. This is the learner’s hypothesis space. (We defer questions
about the origin of H to the next section.) Let h be a specific
hypothesis about a rule, x be one possible query item, and X be the
set of all possible queries that the learner might ask in the game.
For simplicity, we suppose that the learner places an initial uni-
form prior over the hypotheses (so that P(h) � 1/N, where N is the
current total number of hypotheses in H). If the learner poses query
x and the oracle gives response r, Bayes’ theorem tells us that the
degree of belief associated with hypothesis h is given by

P�h � r, x� �
P�r � h, x�P�h�

�h�P�r � h�, x�P�h��
. (1)

The term P(r | h, x) denotes the probability that the oracle would
have given response r to query x if hypothesis h were true. This
probability is 1 if the query item is contained in the rule corre-
sponding to the hypothesis and 0 if it is not. Thus, all hypotheses
that are inconsistent with the oracle’s answer are eliminated, and
all others are retained. If we let nc denote the number of hypotheses
that are consistent with the set of responses and queries so far, then
the degree of belief associated with hypothesis h is now given by

P�h � r, x� � � 1

nc

if h is consistent with all responses

0 otherwise
.

(2)

Because any hypothesis that is not consistent with the responses so
far is eliminated, at every stage in the game the learner has a
collection of not-yet-falsified hypotheses, each of which is equally
plausible. Though simple, this setup closely mirrors the framework
used by Popper (1935/1990), in which a single disconfirming
observation is sufficient to falsify a hypothesis but many confirm-
ing observations are needed to provide strong evidence in favor of
the hypothesis. It is consistent with the classic win-stay/lose-shift
strategy pervasive in human learning (Brown, 1974; Goodnow &
Pettigrew, 1955; Levine, 1959), in which people retain a hypoth-
esis as long as it makes correct predictions but discard it the
moment it makes an incorrect one.
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The learner’s goal is to choose a query x in such a way as to
allow the true rule to be identified as quickly as possible. The
learner knows that the oracle is either going to say “yes,” in which
case there will be some number of hypotheses ny remaining, or the
oracle is going to say “no,” in which case there will be nn � N – ny

hypotheses remaining. For instance, one query might be consistent
with only 1% of possible rules, whereas another one could be
consistent with 50% of the rules. For the first query, there is a 1%
chance that the oracle will eliminate 99% of the possible rules and
a 99% chance that it will eliminate 1% of the rules; for the second,
50% of the rules will end up eliminated regardless of what the
oracle says.

From an information theoretic perspective (e.g., MacKay, 2003)
it is not difficult to show that the second type of query is superior.
If the aim is to identify the rule as quickly as possible, a rational
learner should choose the item x that is expected to minimize the
posterior entropy I(h | x, r)1 of his or her belief about the identity
of the correct rule, because this corresponds to a state of maximal
knowledge and minimal uncertainty.2 The learner should therefore
pick the x that is expected to return the most information about the
true rule. Formally, the expected entropy is given by

Er�I�h � x, r�� �
ny ln ny � nn ln nn

N
, (3)

where ny � nn � N. The important thing to note is that this
function, which is explicitly derived in the Appendix and illus-
trated for N � 32 in Figure 1a, is minimized when ny � nn � N/2.
Thus, the optimal query x is one that is true for exactly half of the
not-yet-eliminated hypotheses. This corresponds to the bisection
search method that people intuitively prefer to use in simpler
situations. Games in which the learner needs to identify an un-
known person often start with queries about gender for exactly this
reason.

Extension to Probabilistic Rules

The formalism for active learning described earlier assumes that
rules are deterministic, allowing no exceptions, and that the oracle
gives perfect feedback. This is of course a simplification, given
that many (perhaps most) rules allow exceptions. We can capture
this by supposing that the proportion of exception items is � (or,
equivalently, that the oracle makes mistakes for a proportion � of
the items). When this occurs, no rule is ever perfectly falsified,
because any disagreements between the rule and the oracle’s
answer might have been errors by the oracle or genuine exceptions
to the rule. Under such circumstances, the calculation of the
expected posterior entropy is somewhat more complicated; a der-
ivation appropriate to this case is provided in the Appendix. The
important point, however, is that the qualitatively important fea-
tures of the expected entropy function are unchanged. This is
illustrated in Figure 1b, which plots the expected posterior entropy
as a function of ny for several different levels of �. The key point
is that the curves are all still U-shaped, with a minimum value at
ny � N/2. Because these characteristics are the ones upon which
our analysis relies, it is clear that our results generalize to proba-
bilistic rules.

The Partial-Information Case

The previous analysis relies on the assumption that the learner
has access to H, the full set of plausible hypotheses, and is able to
choose x in such a way as to ensure that ny � nn. Under these
assumptions, there ought not to be any PTS bias. However, these
assumptions are not satisfied in the Wason (1960) task or the 20
questions game more generally. In most cases, the learner has only
very limited information to work with: For instance, it is typically
assumed that the learner can keep only a small number of hypoth-
eses in working memory, perhaps only one hypothesis (see Dough-
erty & Hunter, 2003). If so, it is likely that only this limited subset
of explicit hypotheses HE can be used to guide the choice of x. For
the current purposes, we assume that HE is a more or less random
subset of H (e.g., Nahinsky, 1970; Williams, 1971). As long as H
contains “plausible hypotheses” this assumption seems reasonable:
It amounts to the assumption that people ignore “implausible”
hypotheses and choose randomly among the plausible ones. As
such it is broadly consistent with models of hypothesis generation
(Gettys & Fisher, 1979; Thomas et al., 2008) that assume that
people form hypotheses in a sensible fashion.

To formalize the hypothesis testing problem when the learner
has access only to the explicit subset HE, note that the set of N
rules and M entities produces an N 	 M binary truth matrix, whose
ijth element is 1 if the ith hypothesis in H predicts an affirmative
response to the jth possible query and 0 if it does not. In
the simplest case, this is an unstructured matrix in which the cells
are independent of one another. We let 
 denote the probability
that any element takes on value 1. In this situation, if the learner
chooses x completely at random, then the number of hypotheses
that predict an affirmative response to any given query will be
binomially distributed:

ny � Binomial�
, N�. (4)

If it happens to be the case that 
 � 1/2, then the expected number
of hypotheses that would yield an affirmative response ny is N/2;
in other words, the query has a reasonable chance of being optimal
with respect to H. However, for other values of 
 this is not the
case. In particular, if the hypothesis space is sparse, then 
 � 1/2,
meaning that most hypotheses would yield an affirmative response
to only a minority of possible queries. In this situation most queries
will be suboptimal, because ny will probably be smaller than nn. If
the learner has no hypotheses in mind (i.e., HE is empty) then there
is nothing the learner can do to improve matters. But if he or she
has a small number of hypotheses HE in mind, then choosing
queries to which those hypotheses yield affirmative responses will
boost ny and thus improve the efficiency of the query. This is true
even if the learner does not know the sparsity and even if the
explicit hypotheses HE themselves are not sparse, as long as the

1 We have used I (short for “information”) to denote the entropy of a
distribution rather than the conventional H, so as to avoid a notational
conflict with the use of H to refer to the hypothesis space.

2 There are, of course, other ways that the learner’s goal could be
formalized (see, e.g., Nelson, 2005, for a discussion), including minimizing
the number of queries or maximizing the diagnosticity of the next question.
We chose this because it is a reasonable goal, and because it is consistent
with empirical findings about how human learners appear to gather infor-
mation (Nelson, Tenenbaum, & Movellan, 2001).

122 NAVARRO AND PERFORS



average sparsity 
 of the hypotheses in the entire space is less than
1/2; the entropy is related to how efficiently the query eliminates
hypotheses across the entire hypothesis space.

Summary

The basic result states that as long as the hypotheses tend to be
sparse and the learner does not have access to all relevant hypoth-
eses at all times, it is sensible to adopt the PTS with respect to the
set of hypotheses that the learner does have access to. This is true
whether the rules are probabilistic or deterministic. This occurs
because a sparse hypothesis space means the oracle is expected to
produce too many “no” responses with respect to H, and a strategy
that is highly biased toward a “yes” response with respect to HE is
the best way to overcome it. This does not mean that such a
strategy will necessarily or entirely counteract such a bias—it
depends on the strength of the bias and the details of the specific
rules and hypothesis space. It does mean that, in general, the PTS
will counteract it better than most other strategies would. This is
because, even if some rules are not currently available to the
learner, the oracle’s response will still be informative about them
(ruling out those that are inconsistent from ever being considered).

An interesting corollary of this result is the implication that as
the number of implicit hypotheses decreases or the sparsity of the
remaining hypotheses increases the extent of the bias should
reduce. When all remaining hypotheses are explicit the bisection
strategy will become optimal. In fact, empirical findings do sug-
gest that beginning with a confirmatory strategy and moving
toward a disconfirmatory one is more effective (Mynatt et al.,
1978). Our analysis can help to explain other experimental results
as well. For instance, the notion that the PTS may emerge because
of a capacity limitation is consistent with empirical evidence that
increasing the number of alternative hypotheses considered in HE

may improve learning (Klayman & Ha, 1989).

Hypothesis Generation, Sparse Categories,
and Family Resemblances

The main assumption made by all rational analyses of the PTS
is that hypotheses are sparse. Regardless of the precise setup, some
assumption of this form appears to be necessary. In light of this, it
is natural to ask what theoretical justification exists to support this
assumption. Although there are some situations in which hypoth-
eses are necessarily sparse (Austerweil & Griffiths, 2008), most
analyses have relied on the fact that the sparsity assumption
appears to be empirically justified (Klayman & Ha, 1987; Oaks-
ford & Chater, 1994). Although this is reassuring, it is somewhat
unsatisfying at a theoretical level: A theoretical account of the PTS
that makes use of the sparsity assumption should, ideally, be
accompanied by a theoretical explanation of sparsity itself. In this
section, we seek to provide this theoretical basis for sparsity. We
begin by discussing the evidence for the sparsity assumption and
go on to derive sparsity from more basic premises.

The Empirical Evidence for Sparsity

Regardless of what the correct theoretical explanation for the
phenomenon is, there is considerable empirical evidence that peo-
ple do have sparse hypothesis spaces. Most obviously, people’s
hypotheses about rules are presumably heavily reliant on natural
categories. For instance, in Wason’s (1960) number game, the
learner might propose a sparse rule such as “multiples of two”
because he or she is relying on the natural category of “even
numbers.” Therefore if natural categories are sparse, one would
expect that the hypotheses that people form in the context of an
active learning problem would also be sparse. It is intuitively
obvious that natural categories are indeed sparse: Only a minority
of entities in the world belong to the category “dog,” for instance.
Even when we consider the more realistic situation where the
domain is somewhat restricted, sparsity is still the norm. That is,
even if we restrict ourselves to a discussion of animals (rather than
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Figure 1. Expected posterior entropy (in bits) as a function of ny, for a domain with N � 32 objects. Panel a
shows the result for deterministic rules (Equation 3), and Panel b shows what happens when some proportion
of the items � are allowed to constitute exceptions to the rules. The qualitative pattern is the same in all cases,
regardless of whether the rules are deterministic or probabilistic.
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all entities in the world), it is still the case that most animals are not
dogs. Not surprisingly, therefore, experiments aimed at eliciting
information about the structure of natural categories support the
intuition that natural categories are sparse (e.g., De Deyne et al.,
2008).

Even in the more specific context of hypothesis generation—as
opposed to category learning generally—there is empirical evi-
dence for sparsity. In previous work (Perfors & Navarro, 2009) we
found that the number rules people spontaneously construct are
extremely sparse. Similarly, in a more complex study in an auto-
motive context (Mehle, 1982), participants appeared to prefer
sparse theories; indeed, the more they knew about the domain, the
sparser their hypotheses tended to be. In short, hypothesis sparsity
is an empirical regularity regarding human hypothesis generation.

Sparsity Is Not a Logical Necessity

Just as it is obvious that natural categories are sparse, it is also
obvious that this sparsity is not a logical necessity. If the domain
in question consists of a set of M objects, then we can associate
every possible rule h with the category of objects that satisfy the
rule. In total, there are 2M distinct categories that are possible in
this domain, any of which might correspond to the category in
question. Clearly, if the learner treats each of these categories as
equally plausible, then no sparsity bias will emerge: For every
category containing K entities, there exists a complementary cat-
egory containing M – K entities. As a consequence, the average
sparsity will be exactly 1/2. Although this is hardly a novel insight,
it illustrates a simple but important point: Sparsity requires a
psychological explanation.

A natural way to look for such an explanation is to examine how
sparsity is captured within formal models of human categorization
(e.g., Anderson, 1991; Griffiths, Sanborn, Canini, & Navarro,
2008; Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky,
1984). Most of these models do possess a sparsity bias, and in the
majority of cases this bias is imposed because the model assumes
that categories form a partition of the stimuli. That is, the models
assume that individual entities are assigned to exactly one cate-
gory, and as a consequence it is almost impossible for the models
to produce nonsparse category assignments. This is illustrated in
Figure 2a, in which a partition of six objects has one category of
size 3 (A, B, C), one of size 2 (D, F), and one of size 3 (E),
corresponding to a very sparse representation. The key point here
is that theoretical models tend to impose sparsity via the structure
of the category representation, which in this instance is a partition.

Of course, it is not true in general that categories are organized
into partitions. In fact, there is considerable evidence that natural
concepts can be organized into a range of different structures:
Besides partitions, human mental representations can take the form
of hierarchies, spaces, networks, grammars, and many other pos-
sibilities (see Kemp & Tenenbaum, 2008, for an overview). Even
so, it does appear to be the case that sparsity holds across these
structures. To give a single example, the most common alternative
to a partition is a hierarchy. As illustrated in Figure 2b, if every
node in the hierarchy maps to a category, then the overall repre-
sentation tends to be sparse. The only way to avoid sparsity is to
exclude the “singleton” categories category (i.e., the terminal
nodes) and then construct the most “top-heavy” tree possible: Over
six objects, this would produce the categories (A, B), (A, B, C), (A,

B, C, D), (A, B, C, D, E), and (A, B, C, D, E, F), which have
sparsity just over 1/2. However, this is an extremely atypical case:
In general, trees tend to be sparse.

In view of this, one might be tempted to think formal models
necessarily impose sparsity. However, this is not the case. For
instance, in the connectionist approach to semantic representation
the main commitment is to some form of distributed representa-
tion (Rogers & McClelland, 2004), which may or may not be
sparse. Similarly, overlapping clustering (Shepard & Arabie, 1979)
produces stimulus representations in which objects can belong to
any number of categories, and there are no constraints on how
categories overlap. Again, these representations can be sparse, but
they do not have to be. For instance, Figure 2c shows a distributed
representation over six objects produced by a set of overlapping
nonsparse categories. Thus, although sparsity is common among the
representational systems used in cognitive science, it is not a required
feature of formal models in general. It is possible to devise represen-
tational systems that systematically violate sparsity,3 but because this
would be inconsistent with the empirical evidence, researchers
have avoided doing so.

The key thing to take from the previous discussion is this: The
general tendency to see sparse formalisms for category represen-
tation is a consequence of the empirical data, not an explanation of
those data. To see this, suppose that we were to argue that although
sparsity is not a logical requirement, it emerges because people
rely on structured representations (e.g., partitions) that are sparse.
This argument would be correct as far as it goes, but it begs the
question as to why some (sparse) formalisms are plausible but
other (nonsparse) possibilities are not. If we try to justify the
preference for sparse formalisms by reference to the empirical data
(human categories are sparse), then we are right back where we
started: “explaining” sparsity by pointing out that human catego-
ries are sparse. In short, we have no explanation at all for the
sparsity of categories. A more general theoretical principle is
required.

The Family Resemblance Principle as a Potential
Explanation

At this point it is clear that we are looking for a psychological
principle that (a) is satisfied by natural categories, (b) is consistent
with existing formal models, and (c) explains the emergence of the
hypothesis sparsity effect. One candidate for this principle is

3 Indeed, this is trivially easy to do. Let F denote some formal system
that generates category system c (defined over a set of M objects) with
probability p and produces an expected sparsity of 
. Then, we may define
F* to be the formal system that generates the complementary category
system c* with probability p. By complementary we mean that if the kth
category in c indexes the set of q items ck1, . . . , ckq, then the kth category
of c* indexes the other M – q items in the domain (as an example, the
category systems shown in Figures 2a and 2c are complementary). The
expected sparsity of the representations produced by the formal system F*
will necessarily be 1 – 
. Thus, if F is sparse, then F* is not. In the same
way that categories are not logically constrained to be sparse, neither are
formal systems for organizing categories. As before, one might argue that
the complement F* of a sensible system F is likely to be somewhat
implausible, but such an argument would rely on the very thing we are
trying to explain: human preferences for sparse representations.
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family resemblance. Put simply, the family resemblance principle
states that a category is a good one if the members of the category
tend to be more similar to one another than they are to entities that
do not belong to the category. The fact that natural categories
satisfy the family resemblance principle was pointed out by Rosch
(1978), and the principle is reflected in some form in most models
of categorization (e.g., Anderson, 1991; Griffiths et al., 2008;
Kruschke, 1992; Love et al., 2004; Nosofsky, 1984). So it is clear
that family resemblance meets criteria (a) and (b) above. Addi-
tionally, variations of this principle provide much of the founda-
tion for the statistical theory of classification (see Gordon, 1999),
so there is something of a “rational flavor” to the idea. In short, the
family resemblance principle is a central element in any psycho-
logically plausible theory of concepts.

In the next section, we address the third criterion and show that
sparsity is a logical consequence of the family resemblance prin-
ciple itself. When doing so, it is helpful to distinguish the “pure”
idea of family resemblance from the formal models that implement
this principle. As noted above, formal models often enforce spar-
sity by assuming that categories form a partition or a hierarchy, or
some related structure that is necessarily sparse. However, these
restrictions are not strictly required by the basic idea of family
resemblance. The critical constraint that the family resemblance

idea implies is this: A good category is one that groups together
items that are more similar to one another than they are to other
items. Thus the derivation that follows seeks to show that that
sparsity follows from the “group by similarity” idea.

On the Goodness of Categories

To begin with, we need to formalize the family resemblance
principle. Suppose that we have some hypothesized rule h that
picks out a category, and let xh denote the set of entities that belong
to that category. If we let s(xi, xj) denote the similarity between
entities xi and xj, then the average within-category similarity,
sin(xh), is given by

sin�xh� �
1

mh�mh � 1� �
xi�xh

�
xj�xh

s�xi, xj�, (5)

where mh denotes the number of entities in the category (out of a
total of M entities in the domain), and the summations are taken
over all i � j. This is graphically illustrated in Figure 3: In this
figure, the darker shaded cells (those labeled “within”) correspond
to similarities that are averaged in Equation 5. Following the same
logic, the average similarity between category members and non-
members, sout(xh), is

Figure 2. Are formal representations sparse? Partitions (Panel a) are almost always sparse, trees (Panel b) are
usually sparse, while distributed representations (Panel c) can be sparse or nonsparse as desired.

Figure 3. An illustration of which similarities contribute to the calculation of category goodness, for a domain
with M � 10 items. On the left, we have a small category containing four items (A, B, C, D), and on the right
the category is large, with six items (A, B, C, D, E, F). In both figures, the dark shaded areas correspond to
elements of the similarity matrix that contribute to the calculation of the within-category similarity, and the
lightly shaded areas indicate which pairwise similarities contribute to the between-category similarity. Unshaded
areas make no contribution and are hence irrelevant. The key observation is that larger categories implicate a
much larger proportion of the matrix.
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sout�xh� �
1

2mh�M � mh�
�

xi�x�h�

�
xj�x�h�

s�xi, xj�. (6)

By convention, this is generally referred to as the between-
category similarity, though in the current context the term is
slightly odd because there is only a single contrast category (i.e.,
nonmembers). In any case, the relevant pairwise similarities for
this expression correspond to the lighter shaded cells in Figure 3.
Having defined the within- and between-category similarities, it is
straightforward to formalize the family resemblance principle: The
goodness of the category gh is simply the difference between these
two averages,

gh � sin�xh� � sout�xh�. (7)

If gh  0, then the entities within the category are more similar to each
other than they are to other entities, and the category is a good one in
the family resemblance sense. In contrast, if gh � 0, then the category
members are actually more similar to nonmembers than they are to
one another, and it is therefore a bad family resemblance category.

In what ways can the goodness of categories vary? Clearly, this
depends in part on the precise nature of the pairwise similarity
function s(xi, xj). As such, idiosyncratic variations would be expected
across different stimulus domains. For instance, if similarities are
constrained by a geometric structure (e.g., Attneave, 1950), we might
expect somewhat different answers than would be obtained if
similarities are described in terms of feature overlap (Tversky,
1977). However, we wish to argue that although some things are
specific and depend on the particular structure that underlies the
similarity function, there are also some regularities that might
be expected to be universal (or nearly so) and do not actually
depend on the details of the similarity structure. In particular,
we suggest that sparsity is one such universal.

With this in mind, in our derivation below we strip out almost
everything that might plausibly be called structure from the sim-
ilarity function. In effect, we treat the pairwise similarities as if
they were independent and identically distributed random vari-
ables. Moreover, because the (marginal) distribution of empirically
measured similarities varies wildly across domains (see Figure 4),

colors countries congressional voting

dot patterns drug use faces

flower pots fruits kinship

numbers morse code rectangles

Figure 4. The marginal distribution over empirical similarities for several domains. All plots are drawn on the
same scale, with the horizontal axis running from 0 to 1 because all data sets have been normalized so that
similarities fall within this range. Across 12 data sets it is clear that similarities can be distributed in many
different ways. The data sets are all available online courtesy of Michael Lee (www.socsci.uci.edu/�mdlee/
sda.html) and cover a range of collection methodologies and domains. Specifically the data relate to colors
(Ekman, 1954), countries (Navarro & Lee, 2002), congressional voting patterns (Romesburg, 1984), dot patterns
(Glushko, 1975), patterns of drug use (Huba, Wingard, & Bentler, 1981), photographs of faces (unpublished
data, available on Michael Lee’s website), drawings of flower pots (Gati & Tversky, 1982), fruits (Tversky &
Hutchinson, 1986), kinship terms (Rosenberg & Kim, 1975), the numbers 0–9 (Shepard et al., 1975), Morse code
patterns (Rothkopf, 1957), and rectangles with interior line segments (Kruschke, 1993).
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we make almost no assumptions about what distribution the pair-
wise similarities are generated from. The only constraint we im-
pose is to assume that this distribution has finite mean and finite,
nonzero variance. In other words, we assume that the pairwise
similarities among entities are not all identical: There must be
some variation in the world. The reason for taking this “minimal-
ist” approach is as follows: Our goal is to ensure that our deriva-
tion does not implicitly rely on any deeper representational struc-
ture and thus show that sparsity follows from the family
resemblance principle itself. The simplest way to do this is to
remove any such structure. It should not be construed as a claim
that no deeper structure exists in real life.

Given these extremely weak assumptions, what can we say abut
the distribution of the category goodness measure gh? Although
the raw distribution over pairwise similarities s(xi, xj) can take any
shape so long as it has finite mean � and variance �2, the central
limit theorem (e.g., Schervish, 1995, theorem B.97) implies that
(in the limit) the within- and between-category averages become
normally distributed:

sin�xh� � Normal��,
�2

mh�mh � 1�� , (8)

sout�xh� � Normal��,
�2

2mh�M � mh�
� . (9)

However, the critical point here is not the fact that the distributions
become normal but rather the fact that the variance of these
distributions depends on the number of items mh that belong to the
category. Taking the difference between these variables yields the
following asymptotic distribution for the category goodness mea-
sure:

gh � Normal�0,
�2

mh�mh � 1�
�

�2

2mh�M � mh�
� . (10)

Notice that the value of � just acts as a scaling constant and plays
no role in determining the sparsity of the resulting hypothesis
space. That is, if the combination �1, �1 yields an expected sparsity

, then for every other possible variance �2 there exists a corre-
sponding threshold �2 that yields the same sparsity 
. Conversely,
if there is no value �1 that would yield sparsity 
 if the variance is
�1, then there is no value of �2 that would do so for �2. Thus, for
simplicity and without loss of generality we set � � 1, which gives

gh � Normal�0,
1

mh�mh � 1�
�

1

2mh�M � mh�
� . (11)

Now, notice that the function that describes the variance of the
distribution over category goodness,

1

mh�mh � 1�
�

1

2mh�M � mh�
, (12)

is largest when mh is small.4 The difference in variance means that
it is “easier” to find a very good sparse rule than it is to find a very
good nonsparse one. It also implies that it is easier to find a very
bad sparse rule, but because the learner presumably does not care
about finding bad rules, this is not particularly interesting.

This difference in variability emerges because sparser rules
involve aggregating over fewer similarities. To understand why,

consider Figure 3. It illustrates which cells in a 10 	 10 similarity
matrix contribute to the category goodness calculation for a sparse
category containing four objects (left) and a nonsparse one con-
taining six objects (right). The dark shaded areas correspond to
elements of the similarity matrix that contribute to the calculation
of the within-category similarity, and the lightly shaded areas
indicate which pairwise similarities contribute to the between-
category similarity. Unshaded areas make no contribution and are
hence irrelevant. Note that the rule indexing fewer items has many
more unshaded cells, indicating that sparser rules involve fewer
pairwise similarity calculations. What this means is that it is much
easier to find a small collection of items that are especially similar
to one another or especially dissimilar to one another. In essence,
this is what the central limit theorem implies—the more pairwise
similarities that we have to average over to compute the category
goodness, the more likely it is that the category will be “average”
(i.e., have gh very close to 0).

The consequence of this is that the very best categories are
sparse, as are the very worst ones. For instance, the numbers 2, 4,
and 6 are much more similar to one another than most numbers,
and so (2, 4, 6) is reasonably good category (i.e., gh  0). In
contrast, 0, 2, and 7 are unusually dissimilar, and so (0, 2, 7) ends
up being a bad category (i.e., gh � 0). However, when one looks
at the complementary categories (0, 1, 3, 5, 7, 8, 9) and (1, 3, 4, 5,
6, 8, 9), it is clear that these are both mediocre at best (gh � 0). In
the first case, there are some items that are very similar (the five
odd numbers) to one another, but because these are lumped in with
two nonodd numbers (0 and 8) it is not a very good category. In the
second case, there is a run of consecutive numbers from 3 to 6, but
there are three other numbers in the category, so it too is fairly
poor. That is, small categories have the potential to be very good
or very bad, whereas large categories do not.

This is not unique to the numbers domain, of course. The small
category (mother, father, daughter, son) is very sparse and feels
like a very good category (it has gh  0)—it is put together from
kinship terms that are unusually similar to one another. In contrast,
the small category (grandmother, uncle, cousin, brother) feels like
a very bad category (it has gh �� 0)—it is put together by choos-
ing a deliberately weird grouping. The complementary categories
in both cases consist of a large number of kinship terms, some of
which are similar and others which are not, and hence have gh �
0 in both cases.

Sparsity, Finite Memory, and Family Resemblance

What does this tell us about sparsity? To answer this, recall that
in a domain with M items, there are a total of 2M distinct ways to
group items together into a category. As the domain size becomes
large, this number becomes so large that even a learner with a very
large memory capacity will be able to encode only a small pro-

4 To be strictly accurate, this function is not perfectly monotonic. The
minor violation of monotonicity is due to the fact that the category
goodness calculation involves the difference between two averages (i.e.,
the within-category similarity and the between-category similarity), rather
than a single average. As such, there is a minor violation of this effect that
occurs when the rule in question is almost completely nonsparse (i.e., when
mh � M). However, as is clear from Figure 5, this weak violation of
monotonicity does not induce a nonsparse hypothesis space.
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portion of them. With this in mind, suppose that the learner retains
only the best possible categories. Specifically, imagine that the learner
has some threshold � such that the rule h is an admissible member of
H only if the goodness gh is greater than that threshold. Notice that we
place no particular structural constraints on which categories are
included: For �  0 the learner ends up with a collection of good
categories that need not form a tree, a partition, or any other structure.
Using the result in Equation 11, we can calculate the expected sparsity
of the selected categories as a function of � (see Appendix for
technical details). This function is plotted in the left panel of Figure 5
for a domain consisting of M � 16 entities. As is clear from inspec-
tion, when the threshold is high enough (�  0) the hypothesis space
tends to be sparse (i.e., 
 � 1/2), and as the threshold gets higher, the
average sparsity decreases.

One natural question to ask is whether this pattern occurs for
real data sets, because the simplifying assumptions that we have
made (such as independence) will not necessarily hold, and the
analysis makes use of an asymptotic argument based on the central
limit theorem. There are many empirical similarity matrices that
have been published, and so it is straightforward to verify that the
prediction holds. Examples constructed from three empirical sim-
ilarity matrices are shown in the right panel of Figure 5. The
numbers data are a similarity matrix that estimates the similarity
between all pairs of numbers in the range 0–9 (Shepard, Kilpatric,
& Cunningham, 1975). The kinship data (Rosenberg & Kim, 1975)
examine the perceived similarity between 15 different kinship
relations (e.g., brother, sister, cousin, father). Finally, the numbers
data measure the perceived similarity between 16 nations (Navarro
& Lee, 2002). In each case, we calculated the goodness for all 2M

possible categories (where M � 10 for numbers, M � 15 for
kinship, and M � 16 for countries) and then used these calcula-
tions to infer the sparsity 
 that would emerge if the learner
included only those categories with gh  �, for a range of � values.
As is clear from inspection, the empirical data show the expected
pattern. That is, good family resemblance categories tend to be
sparse.

We can see this in a little more detail if we calculate the
category goodness for all possible categories in some domain and

plot this as a function of size. Figure 6 depicts the effects of three
different choices of threshold � given all 215 � 32,768 logically
possible categories for the kinship terms. The horizontal axis
shows the number of entities mh captured by the rule, and the
vertical axis shows the goodness of the rule gh. As predicted,
the sparse rules vary widely in goodness, whereas less sparse ones
are all close to the average. As a result, when � � 0, about half of
the possible categories meet the threshold, and there is no sparsity
bias in the corresponding hypothesis space H (on average, the rules
admitted into H index 7.58 of the 15 items). However, when the
threshold is raised (for instance, to � � 0.15 or � � 0.075), only
the sparser rules are good enough to be included.

Discussion

The analysis presented in this article is necessarily somewhat
simplified. We therefore briefly discuss a range of issues that it
raises and the assumptions upon which it relies.

Structure in the World

Perhaps the most obvious simplification in this article is that we
make very minimal assumptions about the structure of the world:
We assume that some stimuli are more similar than others, but
there is no other source of structure built into the analysis. We also
assume that the rules admitted to H are statistically independent of
one another. Naturally, we expect that the real world is consider-
ably more structured than these assumptions imply. This does not
change our basic point, which is that only a very minimal amount
of structure is actually needed to induce the sparsity bias and hence
the PTS.

Nevertheless, it is interesting to consider in what ways the world
might diverge from the assumptions we have made and what this
would mean for our analysis. Perhaps the most obvious point of
divergence occurs when we relax the assumption that the rules are
independent from one another. In that case, it might be possible for
the learner to acquire structured background knowledge that al-
lows him or her to bypass the capacity constraints and therefore
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Figure 5. On the left, the expected sparsity 
 of the hypothesis space H is plotted as a function of the threshold
�, for a small domain with M � 16 entities. On the right are the corresponding functions for three empirical data
sets, numbers (M � 10), kinship terms (M � 15), and countries (M � 16).
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make better queries based on this knowledge. When playing the
everyday version of 20 questions, for instance, people typically
start with “animal/mineral/vegetable” queries as a method for
approximating globally optimal questions without explicitly
representing the complete set of possible objects. In such cases
it may be possible to improve on the positive test approach.
However, the original Wason (1960) task—and many other
typical situations, including scientific discovery—makes such a
strategy difficult: The set of plausible rules is too large to hold
in working memory, and there is no easy way to use global
domain knowledge or exploit dependencies among the rules.
Our analysis suggests that it is precisely in such cases that the
PTS approaches optimality.

Implicit Falsification and the Role of Memory

One question worth considering is the difference between
falsifying the explicit rules in HE and those in the complemen-
tary set of implicit rules HI. This issue is reminiscent of early
discussions of the rule-discovery task (Wason, 1962; Weth-
erick, 1962) in which a distinction was drawn between falsifi-
cation of a hypothesis explicitly considered by a participant
(falsification in HE) and the kind of implicit falsification that
occurs because the oracle’s responses are inconsistent with a
great many rules, regardless of whether the learner has explic-
itly considered them (falsification in HI). The analysis in this
article treats both of these events as genuine falsifications, even
though the learner would be unaware of implicit falsifications.
The natural way in which this might happen is simply that these
implicitly eliminated hypotheses are never considered, because
they are inconsistent with previous observations. Nothing in the
analysis requires learners to be aware of this, however; it
merely requires that they not generate hypotheses that are
inconsistent with the data so far.

Of course, this aspect of our analysis may be seen as a bit odd:
Why assume that the learner has limited memory capacity for

hypotheses but perfect memory for data? In many situations such
an assumption is not unreasonable: For instance, it is trivially the
case that data are easily “remembered” by virtue of being written
down, whereas the complete set of logically possible hypotheses is
almost never easily accessible. In such cases there is a genuine
asymmetry between data and hypotheses. However, because such
arrangements are by no means universal, it is instructive to con-
sider how the analysis would change if we relaxed the assumption
that data are perfectly remembered. Our conjecture is that the same
qualitative pattern would emerge, with a PTS converging more
quickly than other strategies on the correct rule. The main differ-
ence would be that all strategies would learn more slowly. To see
why this would be the case, suppose that we (rather simplistically)
formalize the notion of limited memory by assuming that some
data are randomly deleted from memory. This would effectively be
the same as if those data had never been seen: Any hypotheses that
would have been eliminated by such data would no longer be
treated as having been falsified. However, because the analysis
does not depend on any particular assumptions about what sort of
data have or have not been seen, dropping data at random would
not change the relative performance of different types of strategies.
Only if the learner is more likely to forget data resulting from
positive tests than negative tests would this analysis change; but if
anything, the opposite assumption may be true (Taplin, 1975).

This does raise the broader question of what our approach
presumes about the nature of memory. We assume that the learner
constructs a space of plausible rules H, from which a small number
of explicit hypotheses HE are selected and tested. One possible
interpretation of such an assumption is that the larger hypothesis
space H might correspond to concepts that are activated in long-
term memory, whereas the explicit hypotheses HE could corre-
spond to the contents of working memory. However, we stress that
this interpretation is by no means critical to the analysis: We
adopted this “two-stage” construction primarily so that we could
analyze hypothesis generation and hypothesis testing as two dis-

Figure 6. Illustration of the emergence of a sparsity bias. Each panel plots both the size mh and goodness gh

of all 32,768 possible categories for the kinship data. The solid line depicts the threshold �; black dots correspond
to rules that meet the threshold; gray dots are those that do not. The overall triangular shape of the data is a
consequence of the central limit theorem, and so when the learner imposes the requirement that the admissible
rules be good (i.e., �  0), a sparsity bias emerges.
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tinct problems. Introducing the idea that H corresponds to a set of
“plausible” rules allowed us to show that H tends to be sparse in
an analysis distinct from demonstrating that the PTS follows from
this sparsity. Yet this construction is rather artificial; for instance,
we could consider a situation in which long-term memory has
access to all 32,768 rules in Figure 6 and generates explicit
hypotheses HE directly, but with a strong bias to prefer good rules,
or in such a way as to place a high prior probability over the best
rules. This would produce a similar result, although the full story
in this case is slightly more complex and beyond the scope of this
article.

Other Extensions

One of the respects in which our analysis is less general than
that of Klayman and Ha (1987) is that we have addressed only the
active learning situation where the learner chooses the query item
and the oracle provides answers to the query. The natural coun-
terpart to this scenario—considered by Klayman and Ha (1987)
but omitted here—is observational learning, where the oracle
generates either positive evidence (consistent with the true rule) or
negative evidence (inconsistent with the true rule). The main
reason we do not discuss this situation is that there exists a
considerable body of work that bears on this problem already. The
Bayesian theory of generalization (Navarro, Lee, Dry, & Schultz,
2008; Sanjana & Tenenbaum, 2002; Tenenbaum & Griffiths,
2001) is strongly premised on the notion that natural concepts tend
to be sparse phenomena, for which positive evidence is particularly
powerful, and that people leverage off this to learn the meaning of
words (Xu & Tenenbaum, 2007), among other things. Similarly,
recent research on pedagogical sampling suggests that learning in
both adults and children is sensitive to the nature of the choices
made by the oracle (Bonawitz et al., 2009; Shafto & Goodman,
2008). And although early articles in computational learning the-
ory seemed to suggest that children should not be able to learn
languages from positive-only evidence (Gold, 1967), more recent
work (e.g., Chater & Vitányi, 2007; Muggleton, 1997; Perfors,
Tenenbaum, & Wonnacott, 2010) has suggested that learning from
positive evidence can be quite powerful. In view of this existing
literature and the fact that the classic decision-making results
(Wason, 1960, 1968) relate primarily to the active learning sce-
nario, we discuss only the active case in detail here.

Our analysis is also restricted to the rule-discovery problem.
This problem is quite broad, covering a range of interesting prob-
lems in science, language learning, and categorization, but there
are other tasks that remain outside its scope. Most obviously,
because our main goal was to consider the interaction between
hypothesis generation and hypothesis testing, the link to the four-
card selection task is complicated by the fact that it does not
involve any hypothesis generation. This is not to say that there are
no implications to be drawn, but in view of the fact that other
analyses already cover the selection task in some detail (Oaksford
& Chater, 1994), we do not address it here.

Capacity Limited Rationality

Because the analysis makes use of Bayesian theories of catego-
rization (Anderson, 1991; Griffiths et al., 2008), hypothesis gen-
eration (Gettys & Fisher, 1979), and hypothesis testing (Klayman

& Ha, 1987), it should be clear that we have focused primarily on
the optimal solution to the computational problem facing the
learner (Marr, 1982) and not on the processes by which such
solutions may be reached. Even so, our analysis differs from a
“standard” computational level analysis (e.g., Shepard, 1987;
Tenenbaum & Griffiths, 2001) because we assume that processing
constraints (probably in the form of working memory) that place a
limit on the number of hypotheses one can explicitly consider play
a central role in explaining human behavior. Thus, ours is a
rational analysis in the sense that we show that positive testing is
a conditionally optimal search strategy for a learner who has to
deal with those constraints. It is similar in spirit to the rational
approximation idea proposed by Sanborn, Griffiths, and Navarro
(in press) and the locally Bayesian learning idea considered by
Kruschke (2006). In fact, one way of characterizing the approach
is as an attempt to incorporate architectural assumptions into
rational analysis (see Anderson, 2007, for discussion). As we
conceive it, the working memory constraint on the size of HE and
the long-term memory constraint on the size of H are properties of
the underlying cognitive architecture. Rather than ignore these
ideas when modeling human learning, we instead treat the core
ideas (e.g., working memory constraints) as fixed and then seek to
solve the relevant computational problem (rule learning) condi-
tional on this architecture. The result is a kind of rational analysis
that still deals with universal computational problems (Shepard,
1987) but nevertheless is sensitive to the kinds of basic memory
limitations (Cowan, 2001; Miller, 1956) that might apply to real-
world learners.

Conclusion

We demonstrate two findings in this article. In the realm of
hypothesis testing, we show that when rules are sparse and the
learner has access only to a small number of hypotheses, the PTS
tends to be the best learning method (as in Klayman & Ha, 1987;
Oaksford & Chater, 1994). In the realm of hypothesis generation,
we suggest that sparse hypothesis spaces arise as a natural conse-
quence of choosing sensible rules (this is implicit but not devel-
oped in some information theoretic analyses, such as Cherubini et
al., 2005, and Frank, Goodman, Lai, & Tenenbaum, 2009). Al-
though there is considerable existing evidence that people do
represent the world sparsely, and the practical usefulness of sparse
representations is evident in fields as diverse as machine learning,
statistics, and neuroscience, we are not aware of any existing work
that explicitly connects the two realms.

Taken together, the results provide a deeper theoretical expla-
nation for the PTS. We envisage a learner who operates in a
structured world and generates hypotheses in a Bayesian way
(Gettys & Fisher, 1979), such that the prior over rules assigns
higher probability to those rules that correspond to “good” family
resemblance categories. Because good categories tend to be sparse,
the learner tests them using the method that is optimal for sparse
rules: the positive test strategy. Of course, this strategy is not
perfect: no strategy can be when handling inductive problems, as
the original Wason (1960) example illustrates. However, because
the inevitability of inductive failures is considered to be a hard
problem in philosophy (Goodman, 1955, 1972; Hume, 1739/
1898), scientific discovery (Feyerabend, 1975), and computational
learning (Wolpert & Macready, 1997), we might forgive human
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participants for following an optimal strategy that happens to fail
in some cases.
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Appendix

Additional Mathematical Details

Expected Posterior Entropy for Deterministic Rules

Suppose the learner poses query x and obtains response r
from the oracle and now has posterior distribution over hypoth-
eses P(h | r, x). The entropy of this posterior distribution is
given by

I�h � r, x� � ��
h�H

P�h � r, x� ln P�h � r, x� (13)

� � �
h�H�

1

nc
ln

1

nc
, (14)

where H� contains only those hypotheses that are consistent with
the oracle’s response. Because there are nc such hypotheses, the
effect of the summation is simply to cancel the leftmost 1/nc term,
and hence

I�h � r, x� � � ln
1

nc
(15)

� ln nc . (16)

From the perspective of the learner who has not yet posed the
query x, the response r is not known. The expected posterior
entropy Er[I(h | r, x)] can therefore be found by averaging the
entropy corresponding to a “yes” response and the entropy corre-
sponding to a “no” response, each weighted by their expected
probability (which is ny /N for a “yes” response and nn /N for a “no”
response). Thus, Er[I(h | r, x)] is given by

Er�I�h � r, x�� � Er�ln nc� (17)

�
ny

N
ln ny �

nn

N
ln nn. (18)

This produces the result in Equation 3.

Expected Posterior Entropy for Probabilistic Rules

In the probabilistic case, some proportion of the items � are
exceptions to the rule, either because the oracle is fallible (or

probabilistic) or because the situation involves learning a genuine
rule plus exception structure. Assume that the learner is able to
select query items x so as to control the expected probability that
the oracle will answer “yes” and that the learner adopts a policy of
keeping this probability at a constant value y (and note that ny �
N 	 y). Then, consider the case where the learner has asked q
queries and received responses r. A hypothesis h that is consistent
with c of these queries assigns probability to the oracle’s responses
as follows:

P�r � h, x� � �q�c�1 � ��c. (19)

Because the distribution over hypotheses is initially uniform
P�h��1, the posterior probability of this hypothesis after q queries
have yielded responses r is

P�h � r, x� �
�q�c�1 � ��c

�h��H �q�c��1 � ��c�
(20)

�
�q�c�1 � ��c

�c��0
q nc��

q�c��1 � ��c�
, (21)

where c� denotes the number of responses correctly predicted by
h�, and nc� is the number of hypotheses that predicted exactly c�
responses correctly. The exact value of nc depends somewhat on
exactly which rules are in H and what queries are made, but to a
first approximation we can estimate what this number should be by
making use of the “yes probability” y and the sparsity 
. If
independence holds, the probability � that a hypothesis agrees with
the oracle’s response is just

� � y
 � �1 � y��1 � 
 �. (22)

If so, then we would expect that the most likely value for nc is

nc � N�c
q��c�1 � ��q�c. (23)

To calculate the expected posterior entropy, we need to consider
all possible oracular response r patterns over the q queries. How-
ever, the main quantity of interest is z, the number of “yes”
responses that the oracle actually gave.

(Appendix continues)
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E�I� � �
z�0

q

P�z � y, q�I�h � r�, (24)

where

P�z � y, q� � �z
q�yz�1 � y�q�z, (25)

and the entropy is

I�h � r� � �
h �H

P�h � r, x� ln P�h � r, x�. (26)

As before, we can simplify this expression by converting the sum
over h to a sum over c and multiplying each term by nc. Once this
is done, we can substitute terms to compute the expected posterior
entropies for the probabilistic case. It is this calculation that
produced the plots in Figure 1b, where we set q � 1 so that the
results can be compared with the deterministic case in Figure 1a,
and we convert the horizontal axis from y to ny for the same reason.

On the Sparsity of Family Resemblance Categories

In this section we provide details for the calculation of expected
sparsity as a function of threshold. First, note that Equation 11
implies that if a category contains mh items chosen at random, the
probability that gh  � is given by

P�gh � � � mh� � ����
2mh�mh � 1��M � mh�

2M � mh � 1 � , (27)

where �( � ) denotes the cumulative distribution function for a
standard unit normal variate. Applying Bayes’ rule we obtain

P�mh � gh � �, M� � P�gh � � � mh� P�mh � M�, (28)

where P(mh � M) is just the proportion of the 2M logically possible
categories that include exactly mh entities. This is calculated on the
basis of elementary combinatorics:

P�mh � M� �
M!

mh!�M � mh�!

1

2M. (29)

This then allows us to calculate the expected sparsity 
� of the
hypothesis space H as a function of the threshold �:


� �
1

M
E �mh � gh � �, M� (30)

�
1

M �
mh�1

M

mh P�mh � gh � �, M�. (31)

It is this function that is plotted in the left panel of Figure 5.
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Correction to Purcell et al. (2010)

In the article “Neurally Constrained Modeling of Perceptual Decision Making,” by Braden A.
Purcell, Richard P. Heitz, Jeremiah Y. Cohen, Jeffrey D. Schall, Gordon D. Logan, and Thomas J.
Palmeri (Psychological Review, 2010, Vol. 117, No. 4, pp. 1113–1143), the presentation of the
colors in Figure 3, Panel A, was incorrect due to an error in the production process. To see the
complete article with the correct figure, please go to http://dx.doi.org/10.1037/a0020311.
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