
Cognition 130 (2014) 11–30
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT
Goal neglect and knowledge chunking in the construction
of novel behaviour
0010-0277
http://dx.doi.org/10.1016/j.cognition.2013.08.013

⇑ Corresponding author. Tel.: +44 1223 355 294; fax: +44 1223 359
062.

E-mail address: apoorva.bhandari@mrc-cbu.cam.ac.uk (A. Bhandari).

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Apoorva Bhandari a,⇑, John Duncan a,b

a MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
b Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
a r t i c l e i n f o

Article history:
Received 16 November 2012
Revised 26 June 2013
Accepted 8 August 2013
Available online 18 October 2013

Keywords:
Working memory
Goal neglect
Chunking
Intelligence
Cognitive control
a b s t r a c t

Task complexity is critical in cognitive efficiency and fluid intelligence. To examine func-
tional limits in task complexity, we examine the phenomenon of goal neglect, where par-
ticipants with low fluid intelligence fail to follow task rules that they otherwise
understand. Though neglect is known to increase with task complexity, here we show that
– in contrast to previous accounts – the critical factor is not the total complexity of all task
rules. Instead, when the space of task requirements can be divided into separate sub-parts,
neglect is controlled by the complexity of each component part. The data also show that
neglect develops and stabilizes over the first few performance trials, i.e. as instructions
are first used to generate behaviour. In all complex behaviour, a critical process is combi-
nation of task events with retrieved task requirements to create focused attentional epi-
sodes dealing with each decision in turn. In large part, we suggest, fluid intelligence may
reflect this process of converting complex requirements into effective attentional episodes.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Standard tests of ‘‘general intelligence’’ are important
for their broad ability to predict success in all kinds of cog-
nitive activities, from simple laboratory tasks to educa-
tional and other achievements (Spearman, 1904, 1927).
Well-known examples are tests of novel problem-solving
or ‘‘fluid intelligence’’, such as Raven’s Progressive Matrices
(Raven, Court, & Raven, 1988) or Cattell’s Culture Fair
(Cattell, 1971; Cattell & Cattell, 1973). It has long been
recognised that task complexity is a critical aspect of such
tests. The best tests of general intelligence – those best
able to predict success in many kinds of activity – are
complex tasks with many different parts, while simple
tasks, often involving many trials of the same, small set
of cognitive operations, correlate only weakly with others
(Marshalek, Lohman, & Snow, 1983; Stankov, 2000). In this
paper we ask why task complexity is so important, and
what cognitive operations limit success as task complexity
increases (Frye, Zelazo, & Burack, 1998; Halford, Cowan, &
Andrews, 2007).

Our work builds on the phenomenon of goal neglect de-
scribed by Duncan and colleagues (Duncan, Emslie, Wil-
liams, Johnson, & Freer, 1996; Duncan et al., 2008). Goal
neglect is manifest when a participant is able to correctly
remember and state a task requirement but fails to fulfil
it during performance. This behaviour has been reported
in patients with major damage to the frontal lobe (Luria,
1966; Milner, 1963) but also in people in the normal pop-
ulation (Altamirano, Miyake, & Whitmer, 2010; Duncan
et al., 1996, 2008; Piek et al., 2004; Towse, Lewis, & Know-
les, 2007). In some cases, a whole task may be completed
incorrectly, followed by correct recall of the required rules
(Duncan et al., 1996), though this may be the extreme case
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of a more general difficulty in obeying novel rules (e.g.
Duncan, Schramm, Thompson, & Dumontheil, 2012).
Importantly, goal neglect is closely related to standard
measures of fluid intelligence, supporting the proposal
that, at least in large part, fluid intelligence concerns the
cognitive control functions of the frontal lobe (for related
ideas see Duncan, Burgess, & Emslie, 1995; Kane & Engle,
2003; Marshalek et al., 1983; Oberauer, Süß, Wilhelm, &
Wittman, 2003). Goal neglect also shows intriguing and
unexpected effects of task complexity, suggesting it may
be a valuable test bed for cognitive analysis of complexity
effects.

The phenomenon of goal neglect, and the critical effects
of task complexity, can be illustrated by the feature match
task used by Duncan et al. (2008) (Fig. 1). On each trial, a
pair of digits, usually surrounded by a pair of coloured
shapes, was shown on a computer screen. Participants
were divided into two groups. One group were given
instructions for two tasks (full-instructions condition).
For digits without surrounding shapes, the task was to
add them together and state the result. For digits with sur-
rounding shapes, the task had three rules: if shapes are
completely different (different colour and shape), do noth-
ing; if shapes match in a single feature, press a key on the
side of the larger digit; if shapes match in both features,
again do nothing. Although the participants received
instructions and practice for both tasks, the main experi-
Fig. 1. Sample stimuli for a series of trials (top to bottom) from the
Duncan et al. (2008) feature match task. Actual stimuli were in colour
(solid shape = red, dashed shape = green, dotted shape = blue).
mental blocks included only trials with surrounding
shapes, and participants were explicitly told that they
would not see any digits without surrounding shapes.
The other group of participants were never instructed
about the trials with no surrounding shapes (reduced-
instructions condition), and never received such trials. In
both groups, neglect was observed as a tendency to sim-
plify the response set and make consistent errors through-
out the task. Commonly, for example, the double-match
trials (match in both colour and shape) were treated as
though they were single matches. As usual in goal neglect,
errors were not explained by the simple forgetting of task
rules, as shown by a post-experiment recall test. Instead,
often, rules were correctly remembered but still ignored
in actual behaviour. Also as usual, neglect was strongly
correlated with fluid intelligence. Critically, full-instruc-
tions participants were much more likely to show this ne-
glect pattern.

Note that the only difference between the two groups
was that the full-instructions group had received a more
complex set of task rules during instruction; the actual task
performed by both groups was exactly the same. Along
with similar results in a second task (Duncan et al.,
2008), the findings show that neglect is not modulated
by task complexity at actual task execution; for instance,
by attentional load or the number of behavioural alterna-
tives to be considered during a single trial or even trial
block. In this sense it appears very different from standard
effects of attentional or dual task load, which usually are
tightly time-locked to actual task performance (e.g.
Pashler, 1994). Instead, what seems to matter is the
complexity of the rules as specified in the initial task
instructions. In this paper we pursue the cause of such a
complexity effect, and its relevance to fluid intelligence.

Task complexity effects have frequently been under-
stood in terms of a limited capacity working memory
which has also been linked to general intelligence (Kane
& Engle, 2002; Kyllonen & Christal, 1990; Oberauer, Süb,
Wilhelm, & Wittmann, 2008; Süß, Oberauer, Wittmann,
Wilhelm, & Schulze, 2002). In general, models of working
memory concern combined maintenance and use of task-
relevant information (Baddeley, 1986; Cowan, 2001;
Daneman & Carpenter, 1980; Kane & Engle, 2002; Kane &
Engle, 2003; Salthouse, 1991). Following up this sugges-
tion, Duncan et al. (2008) proposed an account based on
a form of limited working memory capacity. As instruc-
tions are presented, they proposed, task knowledge is
assembled into a control structure they called the task
model. The task model is a limited capacity working mem-
ory for the representation of task rules and facts. As more
information is entered into the task model and this capac-
ity is filled, multiple task components compete for repre-
sentation and individual components may be weakly
represented and lost, leading to neglect of that require-
ment during performance. On this account, neglect is dri-
ven by the total complexity of task instructions, i.e. the
total amount of information to be memorised or entered
into the task model as instructions are received. As Duncan
et al. (2008) point out, such a task model would need
somewhat different characteristics from more standard
forms of working memory. Storage capacity would need
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to be sufficient to hold a whole set of task rules, presented
over an extended period of task instruction. The task mod-
el, furthermore, would need to be durable, maintaining the
full set of task rules even when the participant knew that
some rules would be unnecessary for a current block of tri-
als. In these respects, Duncan et al. (2008) suggested that
the task model might resemble the concept of ‘long-term
working memory’ proposed by Ericsson and Kintsch
(1995). Recent data suggest that goal neglect may show
stronger correlations with fluid intelligence than several
more standard measures of working memory capacity,
including visual short-term memory and conventional
simple and complex spans (Duncan et al., 2012).

In the current work we develop this proposal in light of
the broader literature on task complexity. The challenges
of complex tasks have been addressed from several per-
spectives, including artificial intelligence (e.g. Newell,
Shaw, & Simon, 1958; Sacerdoti, 1974), functional brain
imaging (e.g. Badre & D’Esposito, 2009), the role of com-
plexity in cognitive development (e.g. Frye et al., 1998),
and the link to working memory capacity (e.g. Halford
et al., 2007). In such accounts, complexity is a matter not
simply of the total amount of information in a task descrip-
tion, e.g. the total number of task rules, but also of struc-
tural relations between rules, e.g. relations between the
components of an argument (e.g. Badre & D’Esposito,
2009; Frye et al., 1998; Halford, Wilson, & Phillips, 1998;
Oberauer et al., 2008). In complex tasks, in particular, a
critical factor is chunking into separate task parts (e.g. Hal-
ford et al., 2007). This requirement for chunking has been
recognised in foundational work in artificial intelligence
(Sacerdoti, 1974); here we develop it for the link of fluid
intelligence to goal neglect.

The fundamental need for complex tasks to be divided
into parts is straightforward. Complex tasks involve choos-
ing appropriate, goal-directed actions by deploying task-
relevant knowledge (Anderson, 1983; Newell, 1990). Cor-
rect actions must be chosen by searching through a space
of alternatives which grows with problem complexity,
making the search increasingly demanding. Without fur-
ther structure, behaviour becomes chaotic, with too few
constraints to shape effective action selection at any one
point in the task (Sacerdoti, 1974). The search problem
can be simplified by dividing it into a set of separate parts
or chunks, delimiting the set of alternatives considered
within any particular chunk. Often, this division of a com-
plex problem into separate, more solvable parts is regarded
as division of complex goals into simpler sub-goals (e.g.
Anderson, 1983; Newell, 1990). In everyday behaviour, this
chunking is obvious as a task such as driving to work is
separated into independent parts such as finding car keys,
leaving the house and locking the door, approaching the
car etc. Thus complex tasks are divided into a set of cogni-
tive or attentional episodes, each focusing on just one sub-
part. Within each episode, relevant knowledge must be
selectively retrieved from memory, and combined with
current sensory input to guide appropriate behaviour.

This line of thought suggests a potentially critical role of
chunking in goal neglect. Once a task model has been
established, the knowledge within it must be used to shape
correct behaviour, much as actions, productions, etc. are
selected in classic cognitive architectures (Anderson,
1983; Newell, 1990). As task complexity increases, it is
increasingly critical that each stage of the task is controlled
by a focused attentional episode, excluding aspects of the
model not relevant to the current decision. Without such
focus, task rules are not effectively used, in extreme cases
leading to goal neglect. On this account, neglect should de-
pend, not just on total task complexity, but on how easily
the information in a task model is divided into separate
chunks. Obeying a task rule may be impaired by additional
task knowledge that is closely linked to this rule, making
clear focus on just the most relevant information hard to
attain. Obeying the same rule may be much less influenced
by knowledge that is easily separated into a distinct task
chunk.

The role of chunking and task organisation relates to
several themes in the study of fluid intelligence and frontal
lobe function. In memory tasks, for example, frontal pa-
tients may be impaired in spontaneous organisation of a
memory list (e.g. Gershberg & Shimamura, 1995; see also
Incisa della Rocchetta, 1986) and helped by explicit group-
ing of the list into semantic categories (e.g. Kopelman &
Stanhope, 1998). In young children, a form of goal neglect
is sometimes linked to task switching, for example when
cards must be sorted first by one feature and then another.
Commonly, the child knows the new rule but continues to
sort according to the old one (e.g. Zelazo, Frye, & Rapus,
1996); this form of goal neglect can be ameliorated by
encouraging cognitive separation of the two rules, for
example by spatial separation of the two stimulus features
(Diamond, Carlson, & Beck, 2005). As for fluid intelligence,
all tasks, certainly, require a control structure like that pro-
posed in the task model, and variable ability to assemble
and use such a structure could explain broad positive cor-
relations across many types of task. Each new problem in a
fluid intelligence test, for example, requires assembly of
novel information into a complex set of internal opera-
tions. Plausibly, fluid intelligence could reflect the ability
to manage complex task models, either through capacity
to represent larger task chunks (e.g. Halford et al., 2007),
or through more effective parsing into focused, function-
ally separate sub-parts (Duncan, 2010).

In the present experiments we extend the task model
account to address the role of chunking in goal neglect.
As a chunking account predicts, we find that neglect de-
pends on how a total body of task rules is organised into
component chunks or sub-tasks. Neglect of a task rule in-
creases with added complexity within one chunk or sub-
task; it is independent of complexity in a different sub-
task. In a further analysis, we ask when the critical failures
of action selection take place, and thus, how the incorrect
behaviour of goal neglect develops. One possibility, pre-
sumed by Duncan et al. (2008), is that components of a
task model are lost as instructions are received. The pres-
ent account, in contrast, emphasises processes of knowl-
edge use, as the information in instructions shapes
subsequent behaviour. Here we show that, when neglect
occurs, it is developed and stabilized over the first few per-
formance trials, i.e. as the participant attempts to construct
novel behaviour by recalling task instructions. It is during
these early performance trials, we suggest, that complexity
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affects use of a task model to shape behaviour, with poorer
search of task-relevant knowledge as its complexity in-
creases, and a strong effect of knowledge chunking.

2. Experiment 1

In Experiment 1, each task consisted of two indepen-
dent sub-tasks. Only one of the two sub-tasks had to be
carried out on any particular trial and each sub-task used
largely different stimulus elements. Within each sub-task,
one critical aspect – the response decision – was constant.
Complexity was manipulated by adding additional rules,
determining which element of a display should be chosen
before the response decision was made. Though response
decision and element selection rules were independent,
affecting different aspects of behaviour, we anticipated
that added element-selection rules might increase neglect
of response-decision rules. For response decisions in each
sub-task, we examined the effect of added complexity
either within the same sub-task or in the other sub-task.

One simple possibility is that the critical factor deter-
mining response-decision neglect should be just the total
number of rules specified in task instructions. In this case,
neglect should increase with additional rules in either sub-
task. A more complex pattern is predicted by the chunking
account. At the time of response decision, behaviour could
ideally be controlled by a focused attentional episode,
combining relevant stimulus input with selected re-
sponse-decision rules retrieved from the task model.
Reflecting the usual role of task complexity, however, cre-
ating such a focused episode might be harder when addi-
tional, element-selection rules are also present in the
task model. In particular, we reasoned that rules from dif-
ferent sub-tasks might be more easily separated into dis-
tinct episodes than rules from the same sub-task.
Accordingly, response-decision neglect should be espe-
cially sensitive to added rules within the same sub-task.

In our design, the aim was to manipulate the complex-
ity of the task model. A complex sub-task, however, differs
from a simple sub-task not just in terms of requiring a
more complex task model, but also presents a greater de-
mand during performance. In order to disentangle the ef-
fects of task model complexity from those of real-time
performance demand, we also included a set of blocks for
each task where performance demand was manipulated
on a trial by trial basis, independent of task instructions.
This was done by including some trials requiring only the
response decision, without additional trial complexity.

The term goal neglect has been used for errors in vari-
ous kinds of tasks (De Jong, Berendsen, & Cools, 1999; Kane
& Engle, 2003; West, 2001), and it is unclear how closely
these are related. Here we link our results to the prior find-
ings of Duncan et al. (1996, 2008) using three criteria. First
is gross failure to follow task rules, strongly correlated with
fluid intelligence. As in previous studies (Duncan et al.,
2008), we score both overall task accuracy, and the fre-
quency of gross performance failure. Second is perfor-
mance limited by complexity at task instruction rather
than complexity on an individual trial. Third is
performance error not well explained by explicit rule re-
call, as tested at the end of each experiment.
2.1. Methods

2.1.1. Participants
We recruited 32 right-handed adult participants (12

males, 20 females; age-range: 40–67, M = 59.1, SD = 5.4)
with no history of neurological disorder from the paid vol-
unteer panel of the MRC Cognition and Brain Sciences Unit.
Participants took part after informed consent was ob-
tained. Our sampling from an older population, following
Duncan et al. (2008) was motivated by the need to capture
a wide range of fluid intelligence scores and ensure ade-
quate sampling in the low range. Once fluid intelligence
test performance is matched, goal neglect is independent
of age (Duncan et al., 2012).

2.1.2. Apparatus
All experiments were conducted on a standard desktop

computer running the Windows XP operating system and
connected to a Higgstec 5-wire resistive touch screen dis-
play. The stimulus delivery program was written in Matlab
v6, using the Psychophysics Toolbox extensions (Brainard,
1997; Kleiner et al., 2007). Responses were collected via
the touch screen. Analyses were conducted using Matlab,
Microsoft Excel and SPSS.

2.1.3. Tasks and stimuli
Each participant completed 4 tasks, each composed of 2

sub-tasks (Fig. 2). There were accordingly 8 different sub-
tasks in total, with the same basic structure but involving
8 different kinds of stimulus materials. We begin with an
explanation of sub-task structure, and then consider how
the combination of sub-tasks created the different experi-
mental conditions.

As illustrated in Fig. 3, using the example of Vehicles,
each sub-task came in two forms, simple and complex. In
the simple form (Fig. 3A), only the response decision was
required. The display consisted of a single panel, presented
in one of four possible screen locations, two each to left
and right of a central grey dot. This panel contained a pic-
ture of a motorbike, beneath it two labelled response
boxes, and a number of other surrounding symbols. There
were two types of trials, the majority regular and the
remainder critical. On regular trials (p = 0.75), participants
were asked to touch the box containing a lower case letter.
On critical trials (p = 0.25), a different response was indi-
cated by the symbol (context cue) appearing beneath the
chosen response box. The context cue beneath one re-
sponse box was a triangle, and beneath the other a dot.
When the context cue beneath the chosen response box
was a dot, the task was to touch not the response box itself,
but the dot instead.

We designed critical trials to be especially sensitive to
goal neglect. First, they were less frequent than regular tri-
als. Second, the two symbols used to signal regular and
critical trials were visually similar. Therefore, participants
had to closely monitor the symbols to detect changes in
context. Accordingly performance on critical trials was
our primary measure, with neglect on regular trials antic-
ipated to be less frequent.

In the sub-task’s complex form (Fig. 3B), the response
decision was supplemented by two additional decisions



Task 1 
First sub-task (Vehicles) Second sub-task (Books) 

  
 

Task 2 
First sub-task (Faces) Second sub-task (Animals) 

  
 

Task 3 
First sub-task (Coins) Second sub-task (Clocks) 

  
 

Task 4 
First sub-task (Words) Second sub-task (Cards) 

  

Fig. 2. Sample trial stimuli from all tasks used in Experiments 1 and 2. All stimuli are shown in complex form and represent a regular trial. Actual stimuli
were in colour.
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Fig. 3. Sample stimuli from one sub-task in Experiment 1. Stimuli are shown in both simple (A) and complex (B) form. Actual stimuli were in colour.
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(panel decisions) determining which stimulus should be
used for the response decision. There were now 4 different
panels, two to either side of fixation. The correct panel to
use was determined by two successive decisions, the first
determining side and the second panel within that side.
For the first decision the cue was a symbol at screen centre.
When this cue was a �, the relevant side was left, while if
the cue was +, the relevant side was right. The second deci-
sion was based on vehicle identity. On each side of the
screen, one panel showed a motorbike and the other a
car; the panel to choose was the motorbike (Fig. 3B, ex-
treme left). Once the correct panel was chosen, the re-
sponse decision proceeded as for the sub-task’s simple
form.

Since decisions could be scored independently (see be-
low), our interest focused just on response decision accu-
racy, for sub-tasks in which this response decision was
the only requirement (simple form), or in which it was pre-
ceded by two additional decisions (complex form). To
avoid time limitations, performance was self-paced and
participants were given up to 20s to make each response.
The inter-trial delay was 500 ms.

Display structure and layout was similar for remaining
sub-tasks (Fig. 2), all with simple forms in which only a re-
sponse decision was required, and complex forms with
additional panel decisions. The complete set of rules for
all sub-tasks is listed in Table 1. For all tasks, displays were
18.75 deg in height and 36.02 deg in width. Viewing dis-
tance was not precisely controlled and all visual angle cal-
culations are based on an approximate viewing distance of
50 cm.

Fig. 2 shows the pair of sub-tasks contributing to each
task. Within each task, trials of the two sub-tasks
occurred in random order. The four different experimen-
tal conditions were created by varying simple/complex
form within each sub-task. For one task (simple–simple
condition), both sub-tasks were in the simple form; for
one (simple–complex), the first sub-task was simple and
the second complex; for one (complex–simple), the first
sub-task was complex and the second simple; for one
(complex–complex), both sub-tasks were complex. (Note
that, in these descriptions, the words ‘‘first’’ and ‘‘second’’
refer to the order of sub-tasks in Fig. 2, and the order in
which they were explained in task instructions. As noted
above, during actual performance, trials of the two
sub-tasks appeared in random order.) The allocation of
the 4 tasks or sets of materials (Fig. 2) to conditions
was counterbalanced across participants, along with
both order of tasks and order of conditions within the
session.

2.1.4. Protocol
Each participant served in a single experimental session

lasting approximately 2 h. Session structure is illustrated
with an example in Table 2.

The session began with the participant getting general
instructions and training on using the touch screen display.
This training involved successfully performing single and
double taps at different locations on the screen. They were
then instructed on a sample task (with a single sub-task in
complex form) and asked to respond to 5 sample trials to
familiarise them with the structure of the tasks. The mate-
rials presented in this sample task were not used in the ac-
tual experiment.

Each new task began with an instruction period during
which the rules of the two sub-tasks were given to the par-
ticipant one after the other. For each sub-task, rules were
explained using an example stimulus display. The experi-
menter read out the rules verbatim (see Table 1 for text)
while pointing to the various stimulus elements on the
screen. Participants were told that the tasks were self-
timed but that they should respond as quickly as they
could while being accurate.

After the rules for both sub-tasks were read out, the
sample screen was cleared and the participants were asked
to repeat all the rules of the task. To aid recall, participants
were cued on each rule by being asked a series of ques-
tions. To illustrate again using Vehicles (Fig. 3), the ques-
tions would be: ‘‘How do you decide whether to focus on
the left or the right? Which of the two vehicles do you
pick? Which of the two letters do you pick? How do you
usually respond? What do you do when you see a dot be-
low the lower case letter?’’ (For simple forms, the first two
questions were omitted.) If any error was made during the
cued repetition, the experimenter would correct the partic-
ipant, and the entire repetition sequence would be re-
peated until the participant recalled all components of
both sub-tasks correctly.

Participants were then told that they could not be re-
minded of the rules again. The total number of cued repe-



Table 1
Experiment 1. Verbatim instructions for all tasks (complex form).

First sub-task (vehicles) Second sub-task (books)

Task 1
First look at the centre of the screen. If there is a minus (�) sign, focus on

the left half of the screen and if it is a plus (+) sign, focus on the right
half. You will see a bike and a car. Look out for the bike. Below the bike,
there will be a pair of letters. Touch the lower case letter, unless you
see a dot below the lower case letter, in which case touch the dot
instead

First look at the centre of the screen. If the digit is a 1, focus on the left
half of the screen and if it is a 2, focus on the right half. You will see a pair
of books. Look out for the open book. Below the open book, there will be
two bars. Touch the horizontal bar, unless you see the letter T below the
horizontal bar, in which case touch the both the bars one after the other
(the horizontal first)

First sub-task (faces) Second sub-task (animals)

Task 2
First look at the centre of the screen. If the letter is L, focus on the left half

of the screen and if it is R, focus on the right. You will see a pair of
faces. Look out for the male face. Below the male face, there will be a
pair of shapes. Touch the larger shape, unless you see a symbol that
looks like an i, just below the larger shape in which case touches the
male face instead

First look at the centre of the screen. If the arrow is pointing left, focus on
the left half of the screen and if it pointing right, focus on the right. You
will see a pair of animals. Look out for the monkey. Below the monkey,
there will be a pair of boxes. Touch the box that is crossed out, unless you
see a II symbol below the crossed box, in which case touch the crossed
box twice

First sub-task (coins) Second sub-task (clocks)

Task 3
First look at the centre of the screen. If the symbol is pointing left, focus

on the left half of the screen and if is pointing right, focus on the right.
You will see a pair of coins. Look out for the coin showing heads. Below
the heads coin, there will be a pair of boxes with dots in them. Touch
the box with more dots, unless you see a <> symbol below the box
with the most dots, in which case touch the symbol below the box
with the fewer dots

First look at the centre of the screen. If the letter is an A, focus on the left
half of the screen and if it is the letter B, focus on the right. You will see a
pair of clocks. Look out for the digital clock. Below the digital clock, there
will be a pair of symbols. Touch the $ symbol, unless you see a box with a
* in it just below the $ symbol in which case touch the star just above the
clock

First sub-task (words) Second sub-task (cards)

Task 4
First look at the centre of the screen. If the circle is blue, focus on the left

and if it is red, focus on the right. You will see a pair of words. Look out
for the real/proper word. Below the real word, there will be a pair of
numbers. Touch the lower number, unless you see an = sign below the
lower number, in which case touch between the two parallel lines just
below the numbers instead

First look at the centre of the screen. If the left side of the box is shaded,
focus on the left half of the screen and if the right side is shaded, focus on
the right. You will see a pair of playing cards. Look out for the picture/face
card. Below the picture card, there will be a pair of boxes. Touch the box
that is filled in (with black) unless you see a broken circle just below the
filled in box, in which case touch between the square brackets just above
the picture card
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titions required before the rules were correctly repeated
was between 1 and 3 (M = 1.16, SE = 0.04, Mode = 1).

After the instruction period, participants performed a
practice block with 12 trials, which included 5 regular tri-
als and one critical trial for each sub-task intermixed ran-
domly. Following this, participants performed 10 blocks
of 16 trials each, each block including 6 regular trials
and 2 critical trials for each sub-task intermixed
randomly.

A final manipulation was added to distinguish effects
of task vs. trial complexity. For 5 of the blocks (randomly
chosen) within each task (standard blocks), all trials in-
volved the simple or complex form of the relevant sub-
task, as specified in the instructions for the current condi-
tion. Main data analyses concerned just these standard
blocks. For the remaining 5 blocks (mixed form blocks), a
manipulation was introduced to separate task from trial
complexity. In these blocks, half of the trials from any
complex sub-task in the current condition were actually
in the simple form, i.e. they contained only a single dis-
play panel. Of course, this manipulation had no effect
for sub-tasks that, in the current condition, were already
in simple form. Participants were fully informed of these
manipulations.

At the end of all performance blocks, participants were
again cued to recall the rules and their responses were
recorded.
2.1.5. Culture fair test
After the participants had completed all the tasks, the

Cattell Culture Fair (Scale 2 Form A) instrument (Cattell,
1971; Cattell & Cattell, 1973) was administered under
standard conditions. Participants who had already taken
this test within the last 24 months were not administered
the instrument again, and the previous score was used.

2.1.6. Scoring
The intention in this experiment was to compare accu-

racy of response decisions across task conditions. Accord-
ingly, in the complex case, accuracies for response and
panel decisions were scored independently. To calculate
accuracy for the first decision (left or right side of display),
responses were scored as correct if they involved touching
any element on the appropriate side of the screen. To cal-
culate accuracy for the second decision, responses were
scored as correct if they involved touching any element
associated with an appropriate object type (regardless of
which side it was on). Finally, to calculate accuracy for
the response decision, responses were scored as correct
depending on the response information within the selected
panel, regardless of whether the panel was the correct one.
Separate scores were obtained for critical and regular tri-
als. Trials were classified as regular or critical based on
the context cues associated with the selected panel,
regardless of whether this panel was correct or not. For



Table 2
Experiment 1. Example session structure.

Task conditions and object types No. of blocks Block type Trials presented

General instructions and practice task – – –

Task 1 – SC conditionb (S1: Vehicles, C2: Books) – Instructions and cued repetition
1 Practice Vehicle (simple)

Books (complex)
5a Standard Vehicles (simple)

Books (complex)
5a Mixed form Vehicles (simple)

Books (complex, simple)
– Cued recall

Task 2 – CC conditionb (C1: Faces, C2: Animals) – Instructions and cued repetition
1 Practice Faces (complex)

Animals (complex)
5a Standard Faces (complex)

Animals (complex)
5a Mixed form Faces (complex, simple)

Animals (complex, simple)
– Cued recall

Task 3 – SS conditionb (S1: Coins, S2: Clocks) – Instructions and cued repetition
1 Practice Coins (simple)

Clocks (simple)
5a Standard Coins (simple)

Clocks (simple)
5a Mixed form Coins (simple)

Clocks (simple)
– Cued recall

Task 4 – CS conditionb (C1: Words, S2: Cards) – Instructions and cued repetition
1 Practice Words (complex)

Cards (simple)
5a Standard Words (complex)

Cards (simple)
5a Mixed form Words (complex, simple)

Cards (simple)
– Cued recall

Cattell culture fair test – – –

a Within each sub-task, standard and mixed form blocks were interleaved, in random order.
b SS – simple–simple; SC – simple–complex; CS – complex–simple; CC – complex–complex.
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simple sub-tasks, only response decisions were required
and scored.
2.2. Results

For major analyses, data were taken only from standard
blocks, i.e. those for which all trials were in the form (sim-
ple or complex) appropriate to the task condition. For the
simple–simple condition, all blocks were included as stan-
dard and mixed form blocks were identical. In complex
sub-tasks, panel decisions were extremely accurate (Deci-
sion 1: M = 98.2; Decision 2: M = 98.1), and not of primary
interest. Major analyses concern accuracy of response deci-
sions, especially for critical trials.

Results are presented in 3 sections. First we consider
how errors in the present tasks relate to previous cases
of goal neglect, in particular through strong correlation
with Culture Fair score, and many instances of extreme
failure to obey task rules even when they were understood
and remembered. Second we consider the critical effects of
complexity. Third we consider the mixed form blocks, con-
firming that, in this experiment, errors were controlled by
task rather than trial complexity.
2.2.1. Goal neglect
Previously, neglect has been shown to be largely re-

stricted to people in the lower part of the fluid intelligence
range. In our tasks, for critical trials, the accuracy of re-
sponse decisions (mean across all sub-tasks) showed a
strong correlation with Culture Fair IQ (r = 0.57, p < 001).
The correlation was somewhat weaker for the regular trials
(r = 0.33, p = 0.06). Fig. 4 shows a scatter plot relating re-
sponse decision accuracies to Culture Fair IQs. Especially
for critical trials, these data show a dramatic fall-off in
accuracy with IQ scores below 100, with very high error
rates in some individual participants. As in previous goal
neglect experiments, even though rules were correctly re-
peated before performance began, they were often poorly
followed by low-Culture Fair participants.

Neglect is usually manifest in the form of major failures
of performance that are persistent throughout the task. In
order to discover such cases in our data, for each partici-
pant we calculated response decision accuracy for each
sub-task separately, so that each participant contributed
eight separate scores. Distributions of accuracy in single
sub-tasks are shown in Fig. 5, separately for participants
with a Culture Fair IQ below and above 100. The results
demonstrate that such major failures of performance did
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indeed occur in our tasks. In the majority of sub-tasks, per-
formance was in the highest accuracy bin (80–100%). For
participants with Culture Fair IQ above 100, performance
rarely went below 50%. On the other hand, for participants
with a Culture Fair IQ below 100, where neglect is ex-
pected, performance fell in the lowest accuracy bin (0–
20%) in a significant proportion of sub-tasks. Such neglect
cases were seen both on critical and regular trials.

We next looked at the pattern of errors participants
made in cases of major performance failure. We examined
all cases where response decision accuracy was at 50% or
below and classified them on the basis of the most com-
mon type of error made. On critical trials, we found 30
cases where accuracy was at or below 50%. The most com-
mon error pattern (11 of 30 cases) was the frank neglect of
the context cue, with participants responding to all trials as
if they were regular trials. Another common error pattern
(8 of 30 cases) reflected confusion about the response rule
to be used on critical trials, with participants using re-
sponse rules that were relevant in the other sub-task or
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Fig. 5. Experiment 1. Histograms of sub-task performance for critical (A and B) an
Bars represent percentage of sub-tasks with performance (response accuracy) in
in previously completed tasks. On regular trials, we found
19 cases where accuracy was at 50% or below. By far the
most common error pattern, found in 10 of the 19 cases,
involved participants treating regular trials as critical
trials.

A striking feature of previous goal neglect experiments
was the finding that, when probed, participants could often
correctly recall a task rule that they had neglected during
performance. Therefore, we examined whether response
decision errors in our tasks could be explained by the for-
getting of task rules. We looked at all cases where perfor-
mance on regular or critical trials was at 50% or below
and asked whether the specific errors made by the partic-
ipants could be explained by their description of the task
rules after the task was completed. We found that only 9
of the 30 cases on critical trials and 8 of the 19 cases on
regular trials could be explained by the participant’s failure
to remember the rules correctly.

To exclude the possibility that complexity effects are
driven by rule forgetting, all cases in which post-task recall
was incorrect were removed from subsequent accuracy
analysis.
2.2.2. Complexity effects
The central interest in this experiment was the effect of

task complexity. To address this question, response deci-
sions of each sub-task were scored as a function of both
this sub-task’s complexity (same sub-task complexity) and
the complexity of the other sub-task within the task (other
sub-task complexity). Results are shown in Fig. 6. Values in
Fig. 6 are means across first and second sub-tasks; for
example, the value for same sub-task simple, other sub-
task complex is the mean of data from the first sub-task
in the simple–complex condition, and the second sub-task
in the complex–simple condition. We used two perfor-
mance scores, response decision accuracy (percentage
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Fig. 6. Experiment 1. Mean response decision accuracies (% correct) and frequency of major performance failures (MPF) for critical (A and B) and regular (C
and D) trials as a function of same sub-task and other sub-task complexity.
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correct responses), and mean frequency of major perfor-
mance failure.

For critical trials, the mean response decision accuracy
was analysed with a 2 (same sub-task complexity; simple,
complex) � 2 (other sub-task complexity; simple, com-
plex) repeated measures analysis of variance (ANOVA).
The main effect of same sub-task complexity was signifi-
cant [F(1,31) = 12.72, p < 0.01, g2

p ¼ 0:29] confirming
poorer accuracy in the complex condition (Fig. 6A). Both
the main effect of other sub-task complexity
[F(1,31) = 0.02, p > 0.1, g2

p < 0:01] and the interaction
[F(1,31) = 0.48, p > 0.1, g2

p ¼ 0:02] were non-significant.
The mean frequency of major performance failures on crit-
ical trials was similarly analysed. The main effect of same
sub-task complexity was significant [F(1,31) = 5.94,
p < 0.05, g2

p ¼ 0:16] confirming poorer accuracy in the com-
plex condition (Fig. 6B). Both the main effect of other sub-
task complexity [F(1,31) = 0.80, p > 0.1, g2

p ¼ 0:03] and the
interaction [F(1,31) = 2.35, p > 0.1, g2

p ¼ 0:07] were non-
significant.

Similar results were obtained for regular trials. For
mean response decision accuracy, the main effect of same
sub-task complexity was significant [F(1,31) = 5.20,
p < 0.05, g2

p ¼ 0:14] while the main effect of other sub-task
complexity was non-significant [F(1,31) = 0.48, p > 0.1,
g2

p ¼ 0:02]. Their interaction was also non-significant
[F(1,31) = 0.01, p > 0.1, g2

p < 0:01]. For the frequency of ma-
jor performance failures, the main effect of current sub-
task complexity was significant [F(1,31) = 5.01, p < 0.05,
g2

p ¼ 0:14] while the main effect of other sub-task com-
plexity [F(1,31) = 0.81, p > 0.1, g2

p ¼ 0:03] and the interac-
tion were non-significant [F(1,31) = 0.59, p > 0.1,
g2

p ¼ 0:02].
2.2.3. Mixed form blocks
In this experiment, our aim was to manipulate the com-

plexity of the task model. However, in our tasks, a complex
sub-task differs from a simple sub-task not just in terms of
requiring a more complex task model, but also presents a
greater demand during performance. It is possible, there-
fore, that the complexity effect we find is driven by the
greater performance demand on complex trials. In order
to exclude this possibility, we examined performance on
mixed form blocks. In these blocks, participants were pre-
sented two types of trials. On half the trials, the sub-task
appeared in its full (simple or complex) form, as described
in task instructions. On the other half of the trials, even
sub-tasks that were normally complex appeared in simple
form. If our complexity effects are driven by greater perfor-
mance demand, then response decision accuracies for any
complex sub-task should be higher for the simple form tri-
als compared to the full, complex form trials. A paired t-
test found no significant difference between mean re-
sponse accuracies from complex sub-tasks in full, complex
form versus simple form, either for critical trials [complex
trials: 81.4% ± SE 3.0, simple trials: 84.0% ± SE 3.1,
t(31) = 1.61, p > 0.1, d = 0.28], or for regular trials [complex
trials: 87.4% ± SE 2.3, simple trials: 89.4% ± SE 3.8,
t(31) = 0.81, p > 0.1, d = 0.43]. Results were similar for
mean frequency of major performance failures for critical
trials [complex trials: 0.14 ± SE 0.04, simple trials:
0.14 ± SE 0.03, t(31) = 0, p > 0.1, d = 0.00], and regular trials
[complex trials: 0.09 ± SE 0.02, simple trials: 0.09 ± SE 0.03,
t(31) = 0, p > 0.1, d = 0.00]. Matching previous goal neglect
findings (Duncan et al., 2008), these data suggest that the
complexity effects we found were indeed driven by the
complexity of the task model established during task



A. Bhandari, J. Duncan / Cognition 130 (2014) 11–30 21
instructions, not by the performance demands of individ-
ual trials.

2.2.4. Response times
Of course, though not of direct interest, response times

were also strongly influenced by same sub-task complex-
ity. On critical trials of standard blocks, participants took,
on average, 5902 ms to respond in complex sub-tasks
and 3908 ms to respond in simple sub-tasks. Correspond-
ing values for regular trials were 3053 ms and 1966 ms
respectively.

2.3. Discussion

In Experiment 1 we observed the phenomenon of ne-
glect in a set of novel tasks and reproduced a number of
the findings of Duncan et al. (2008). In our tasks, perfor-
mance on response decisions, especially on critical trials,
was closely related to participant’s fluid intelligence, with
errors much more likely in the lower end of the IQ scale.
We also found an effect of task complexity with these er-
rors being significantly more frequent in complex sub-
tasks, which had a greater number of task components.
This complexity effect was not driven by real-time perfor-
mance demand during task execution, since performance
was similar even on trials involving a simplified version
of a sub-task. Errors were also not explained by partici-
pants’ forgetting task rules during performance, though
in the complex tasks used here, final rule recall was far
from perfect.

Major performance failures in our tasks took several
forms. In some cases there was frank neglect of the context
cue, i.e. treatment of critical trials exactly as though they
were regular trials. In other cases, errors were made in
the decision concerning which trials were regular and
which critical, or in choosing the appropriate response on
critical trials. In general, however, major performance fail-
ures of different kinds all reflected serious failure to use
task rules, not usually explained by apparent explicit for-
getting. In large part, major performance failures of all
kinds were restricted to participants in the lower range
of Culture Fair IQ (Fig. 5).

Our observation of neglect in tasks where stimulus pre-
sentation was unspeeded and response was self-timed is a
novel finding. In previous goal neglect experiments, stimu-
lus presentation was always speeded and responses were
also sometimes speeded. Our results suggest that time
pressure is not a critical factor in the neglect of task rules,
and strengthen the conclusion that neglect is not related to
real-time demands during task execution.

Our principal finding is that, on critical trials, both re-
sponse decision accuracy as well as frequency of major
performance failure were strongly sensitive to the com-
plexity of the same sub-task, but not to the complexity of
the other sub-task in the overall task. Similar, though
weaker, results were seen for regular trials. These findings
show that performance is not controlled simply by the to-
tal complexity of task knowledge described in initial
instructions (Duncan et al., 2008). At the same time, like
previous findings, the results also rule out complexity of
the current trial as the critical factor, since for complex
sub-tasks in mixed form blocks, performance did not im-
prove when the stimulus on a given trial was simple.

This pattern of results is consistent with the chunking
account developed earlier. On this account, when task per-
formance begins, it must be shaped by the knowledge pro-
vided in task instructions. As in all complex behaviour, a
critical process will be constructing a series of chunks or
attentional episodes, each focusing on just one part of
the whole space of action alternatives and relevant knowl-
edge (Sacerdoti, 1974). The present tasks were designed
such that, at least in principle, response and panel deci-
sions were entirely independent. At the response decision
phase, knowledge guiding panel decisions was always
irrelevant, either within the same or other sub-task.
Accordingly, a successfully-focused attentional episode
bearing just on response decisions might have been inde-
pendent of either same or other sub-task complexity. In-
stead, added panel decisions within the same sub-task
substantially impaired response decisions, while added pa-
nel decisions in the other sub-task had little or no effect.
Especially in participants with low fluid intelligence, the
results suggest a limitation in separating the contents of
a single sub-task into effective chunks; so that when re-
sponse decisions were made, access to the correct rules
was impaired by the existence within the sub-task of addi-
tional, but now irrelevant rules. As mentioned above, later
we shall present evidence that critical failures take place
over the first few performance trials, as knowledge is first
used to shape task performance.

In our conception of an attentional episode, relevant
knowledge from the stored task model is combined with
current sensory input to shape correct behaviour. Given
the conditions of the current experiment – with complex
rules and unlimited decision time – it is appealing to ex-
press failure in terms of failed rule retrieval. In these terms,
the conclusion might be that response-decision rules are
easier to retrieve when they are not strongly linked to
other, currently irrelevant rules – specifically, other rules
within the same sub-task. This account has some similarity
with accounts of strategic retrieval in working memory
and recall tasks, which emphasise the importance of epi-
sodic context in delimiting search through stored knowl-
edge (Capaldi & Neath, 1995; Davelaar, Goshen-Gottstein,
Ashkenazi, Haarmann, & Usher, 2005; Howard & Kahana,
2002; Polyn, Norman, & Kahana, 2009; Unsworth & Engle,
2007a, 2007b). To explain correct recall of neglected rules
at the end of a task, it might be thought that the context
cues available to participants during performance are very
different from the ones available in a final recall test. In
many ways, the latter context may better match the
encoding context, providing more effective cues and
improving recall of task rules.

We would suggest, however, that retrieval of complex
task instructions is only one special case of the general
problem of dividing complex problems into effective atten-
tional episodes. In prior cases of goal neglect, even simple,
easily-retrieved rules may be neglected if they are not
strongly cued. In a speeded task, for example, participants
may neglect briefly-presented arrows pointing left or right,
indicating which part of a screen to monitor for critical
events (Duncan et al., 2008). In this case, presumably, the
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difficulty is not so much retrieving the rule associated with
an arrow, but triggering this rule at the right moment in
the task. In other cases of forming useful attentional epi-
sodes, it is information in stimulus materials themselves
that must be organised into useful parts. Perhaps the most
obvious example is the problem-solving of standard fluid
intelligence tests, requiring search through a large space
of possible cognitive operations for useful parts of a solu-
tion. For these reasons, we prefer the more general formu-
lation in terms of attentional episodes to a more specific
emphasis on complex rule retrieval.

A number of factors may determine whether a pair of
task requirements is chunked into same or different parts
of a task representation or model. One factor, especially
relevant in the context of goal neglect, may be the format
in which task knowledge was presented to participants.
Duncan et al. (2008) have linked goal neglect to events that
take place as the participant’s body of task knowledge is
established during instruction. In our experiment, instruc-
tions to participants were provided separately for each
sub-task, one after the other. It is possible that this may
have a bearing on the chunking we observed in our tasks.
Experiment 2 was designed to test this hypothesis.
3. Experiment 2

In Experiment 2 we asked whether the chunking of task
information into sub-task groups was driven by the format
in which the instructions were presented. If the task model
is assembled as task instructions are being processed, it is
plausible that the format of the instructions has a bearing
on chunking. In Experiment 1, instructions for the two sub-
tasks were presented in chunks, one after the other, pro-
viding participants an opportunity to consolidate the first
set of instructions before the second set were presented.
It is possible that this format of instructions drives chunk-
ing of rules into sub-task groups.

In order to test this possibility, in Experiment 2 we re-
peated the complexity manipulations of the previous
experiment, but between participants, we manipulated
the format in which instructions were presented. One
group received instructions in a ‘chunked’ format, grouped
by sub-task much as they were in the first experiment.
First, all the instructions for one sub-task were read out
followed by the instructions for the second sub-task. The
other group received instructions in an ‘interleaved’ for-
mat. In this case, rules were grouped orthogonally by levels
rather than by sub-task. First, rules for panel decisions
from both sub-tasks were presented together, followed
by the rules for selecting response boxes in both sub-tasks,
and finally the response rules for regular and critical trials.

If the format of the instructions drives chunking of task
requirements, the task requirements from the two sub-
tasks should be harder to separate in the interleaved
instructions group and we should find an effect of other
sub-task complexity. In the chunked instructions group,
the instructions are separate and should encourage sub-
task chunking as before. On the other hand, if chunking
is driven by the inherent structure of task requirements,
sub-task chunking should be similar for both the groups
and the effect of other sub-task complexity should be weak
or absent.
3.1. Methods

3.1.1. Participants
Experiment 2 had 48 right-handed adult participants

(25 males, 23 females; age-range: 38–69, M = 55.5,
SD = 6.9). 24 were in the chunked instructions group and
another 24 were in the interleaved instructions group. Par-
ticipants had no history of neurological disorder and were
recruited from the paid volunteer panel of the MRC Cogni-
tion and Brain Sciences Unit. Participants took part after in-
formed consent was obtained.
3.1.2. Protocol
The tasks and stimuli used for Experiment 2 were the

same as those from the previous experiment. The only
changes from Experiment 1 concerned the way that
instructions were presented and the way in which the cued
recalls of the rules were conducted. Both of these differed
for the chunked and interleaved instruction groups.

Each new task began with an instruction period. For
both groups, print-outs of sample trials for both sub-tasks
(Fig. 7) were placed before the participant. The experi-
menter then read out the rules verbatim while pointing
to the various stimulus elements on the print-outs. Partic-
ipants were told that the tasks were self-timed but that
they should respond as quickly as they could while being
accurate. To illustrate the different instruction formats,
consider the example shown in Fig. 7, using Task 1 (see
Fig. 2) in the complex–simple condition.

The instructions given to the two groups for this task
are shown in Table 3. In both groups, instructions were
organised into three ‘steps’. The first step involved select-
ing one of the four panels on the screen. When the sub-task
was in simple form, there was only one panel and the first
step was not required. The second step involved selecting
one of the two labelled response boxes in the panel. The
third step involved choosing the appropriate response
based on whether the trial was regular or critical.In the
chunked instruction group, instructions were organised
first by sub-task and, within each sub-task, by step. So, par-
ticipants first received instructions for steps 1–3 for the
first sub-task followed by the corresponding instructions
for the second sub-task. This was similar to the format of
the instructions used in Experiment 1. In the interleaved
instructions group, the instructions were organised by
steps first and then by sub-task. So, participants received
instructions for step 1 for both the sub-tasks, followed by
instructions for step 2 for both sub-tasks and finally for
step 3. Thus, for the interleaved instruction group, the for-
mat of the instructions encouraged chunking by step
rather than by sub-task.

After all the instructions for the task had been read out,
the sample trial print-outs were removed and the partici-
pants were asked to recall all the rules of the task. To aid
recall, participants were cued on each rule by being asked
a series of questions. The cued-recall used the same format
as the instructions for each group.
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Fig. 7. Sample print out accompanying task instructions (Task 1 from Fig. 2, complex–simple condition). Vehicles (A) are in complex form and books (B) are
in simple form. Actual print-outs were in colour.

Table 3
Verbatim instructions accompanying Fig. 7 (Task 1, complex–simple condition).

Chunked group Interleaved group

In this task you will see screens that look like this (SHOW) In this task you will see screens that look like this (SHOW)
In some screens there are vehicles, like this one (SHOW). The first step is

to select one of the four pictures on the screen. To do that, you first
look at the centre of the screen. The symbol is a � or a + sign. If it is a
�, you look at the vehicles on the left half of the screen, while for a +,
you look to the right. Now, on the selected side, you see a motorbike
and a car. You should select the bike. (POINT)

In some screens there are vehicles, like this one (SHOW). The first step is
to select one of the four pictures on the screen. To do that, you first look at
the centre of the screen. The symbol is a – or a + sign. If it is a �, you look
at the vehicles on the left half of the screen, while for a +, you look to the
right. Now, on the selected side, you see a motorbike and a car. You
should select the bike. (POINT)

The second step is to select one of the boxes below the selected picture.
Below the vehicle, you will see a pair of letters (POINT). You should
select the lower case letter (POINT)

In other screens, there is a single book so it is already selected. The book
can appear in various locations

Finally, the third step is to make a response. It works like this: Normally,
you touch the lower case letter, except that occasionally, just beneath
the lower the lower case letter you see a dot. When this happens, you
should touch the dot instead of the letter (POINTING THROUGHOUT)

The second step is to select one of the boxes below the selected picture.
Below the vehicle, you will see a pair of letters (POINT). You should select
the lower case letter (POINT). Below the book, you will see a pair of lines
(POINT). You should select the horizontal line (POINT)

In other screens, there is a single book so it is already selected. The book
can appear in various locations

Finally, the third step is to make a response

The second step is to select one of the boxes below the selected picture.
Below the book, you will see a pair of lines (POINT). You should select
the horizontal line (POINT)

For vehicles, it works like this: Normally, you touch the lower case letter,
except that occasionally, just beneath the lower the lower case letter you
see a dot. When this happens, you should touch the dot instead of the
letter (POINTING THROUGHOUT)

Finally, the third step is to make a response. It works like this: Normally,
you touch the horizontal line, except that occasionally, just beneath
the horizontal line you see the letter T. When this happens, you should
touch both the horizontal and vertical line (in that order) instead of
just the horizontal line (POINTING THROUGHOUT)

For books, it works like this: Normally, you touch the horizontal line,
except that occasionally, just beneath the horizontal line you see the
letter T. When this happens, you should touch both the horizontal and
vertical line (in that order) instead of just the horizontal line (POINTING
THROUGHOUT)
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To illustrate again using the Vehicles–Books example
(Fig. 7), the questions for the chunked instructions group
would be: ‘‘In step 1, how do you decide whether to focus
on the left or the right? Which of the two vehicles do you
pick? In step 2, which of the two letters do you pick? Final-
ly, how do you usually respond? What do you do when you
see a dot below the lower case letter?’’ – followed by
equivalent questions for books.

For the interleaved instructions group, the questions
would be: ‘‘For the vehicles, in step 1, how do you decide
whether to focus on the left or the right? Which of the
two vehicles do you pick? For the books, step 1 has already
been done for you. In step 2, for the vehicles, which of the
two letters do you pick? And, for the books, which of the
two lines do you pick? Finally, in step 3, how do you usu-
ally respond in the case of the vehicles? And, what do you
do when you see a dot below the lower case letter? And,
for the books, how do you usually respond? What do you
do when you see the letter T below the horizontal line?’’
If any error was made during cued recall, the experimenter
would correct the participant, and the entire cued-recall
sequence would be repeated until the participant recalled
all components of both sub-tasks correctly. Participants
were then told that they could not be reminded of the rules
again. The total number of cued recalls required before the
rules were correctly repeated was similar in both groups.
The chunked instructions group required between 1 and
3 repetitions (M = 1.17, SE = 0.03, Mode = 1), while the
interleaved instructions group required between 1 and 4
repetitions (M = 1.33, SE = 0.05, Mode = 1).

As in Experiment 1, after the instruction period, partic-
ipants performed a practice block with 12 trials, which
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included 5 regular trials and one critical trial for each sub-
task intermixed randomly. Following this, participants per-
formed 10 blocks of 16 trials each, each block including 6
regular trials and 2 critical trials for each sub-task inter-
mixed randomly. 5 randomly chosen blocks were standard
blocks while the rest were mixed form blocks. After all the
blocks were completed, participants were again asked to
do a single cued recall of all rules.

3.2. Results

Scoring and analysis methods were identical to those
used in Experiment 1. Again main analyses concerned
accuracy of response decisions in standard blocks. Again,
accuracies for panel decisions were very high for the
chunked instructions group (Decision 1: M = 98.0; Decision
2: M = 98.0) as well as the interleaved instructions group
(Decision 1: M = 97.0; Decision 2: M = 98.2).

3.2.1. Goal neglect
For the chunked instructions group, the accuracy of

response decisions on critical trials (mean across all
sub-tasks) showed a strong correlation with Culture Fair
IQ (r = 0.68, p < 0.001). The correlation was weaker and
non-significant for regular trials (r = 0.25, p > 0.1).
Corresponding correlations for the interleaved instructions
group were 0.50 (p < 0.05) for critical trials and 0.32
(p > 0.1) for regular trials. Scatterplots for both groups are
shown in Figure 8.

To assess neglect, we again focussed on cases of major
performance failures where response decision accuracy
was at 50% or lower. Data from the two groups were
pooled as they were closely similar. In total there were
48 cases of major performance failure on critical trials
and 28 cases on regular trials. On critical trials, there
were two common error patterns. In 20 cases, partici-
pants confused the two context cues. Another 17 cases re-
flected confusion about the response rule to be used on
critical trials, with participants using response rules that
were relevant in the other sub-task or in previously com-
pleted tasks. Frank neglect of the context cue occurred in
only 6 cases. On regular trials, again, the most common
error pattern, seen in 20 cases, involved confusing the
two context cues. In summary, error patterns were largely
similar to those found in Experiment 1 with the exception
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Fig. 8. Experiment 2. Relationship of response decision accuracy to Culture Fair IQ
(diamonds) and regular (open circles) trials. Each point represents data from a
that frank neglect of the context cue was relatively
uncommon.

Finally, we examined whether response decision errors
in our tasks could be explained by the forgetting of task
rules. For all cases where performance on critical or regular
trials was at 50% or below, we asked whether the specific
errors made by the participants could be explained by their
failure to remember the rules correctly. Across the two
instruction groups, we found that 23 of the 48 cases on
critical trials and 13 of the 28 cases on regular trials could
be explained by the rule reported by participants at the
end of the task. These cases were excluded from subse-
quent accuracy analyses.

3.2.2. Complexity effects
In this experiment, our main question was whether the

format of instructions influenced complexity. Mean re-
sponse decision accuracies as a function of same and other
sub-task complexity are shown in Figs. 9 (critical trials)
and 10 (regular trials).

On critical trials, mean response accuracies were ana-
lysed with a 2 (same sub-task complexity; simple, com-
plex) � 2 (other sub-task complexity; simple,
complex) � 2 (group; chunked instructions, interleaved
instructions) mixed model ANCOVA with group as a be-
tween subject factor and Culture Fair IQ as a covariate.
The main effect of same sub-task complexity was again
significant [F(1,45) = 19.95, p < 0.001, g2

p ¼ 0:31] showing
poorer accuracy in the complex condition (Fig. 9A and C).
The main effect of other sub-task complexity was non-sig-
nificant [F(1,45) = 0.39, p > 0.1, g2

p ¼ 0:01], as was the
interaction [F(1,45) = 0.06, p > 0.1, g2

p < 0:01]. The main ef-
fect of group and all interactions with this factor were non-
significant (all ps > 0.1).

Mean frequencies of major performance failures
showed a similar pattern. The main effect of same sub-task
complexity was again significant [F(1,45) = 10.25, p < 0.01,
g2

p ¼ 0:19] showing poorer accuracy in the complex condi-
tion (Fig. 9B and D). The main effect of other sub-task com-
plexity was non-significant [F(1,45) = 2.34, p > 0.1,
g2

p ¼ 0:05], as was the interaction [F(1,45) = 1.19, p > 0.1,
g2

p < 0:03]. The main effect of group and all interactions
with this factor were non-significant (all ps > 0.1).

On regular trials, mean response accuracies were simi-
larly analysed. This time the main effect of same sub-task
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complexity was non-significant [F(1,45) = 2.99, p > 0.05,
g2

p ¼ 0:06] as was the main effect of other sub-task
complexity [F(1,45) = 0.38, p > 0.1, g2

p ¼ 0:01] and the
interaction [F(1,45) = 0.46, p > 0.1, g2

p ¼ 0:01]. The main ef-
fect of group and all interactions with this factor were also
non-significant (all ps > 0.1).

Mean frequency of major performance failures on regu-
lar trials were similarly analysed. Again, the main effects of
same sub-task complexity [F(1,45) = 2.15, p > 0.1,
g2

p ¼ 0:05] and other sub-task complexity [F(1,45) = 0.23,
p > 0.1, g2

p < 0:01], as well as the interaction
[F(1,45) = 0.69, p > 0.1, g2

p ¼ 0:02] were all non-significant.
The main effect of group and all interactions with this fac-
tor were also non-significant (all ps > 0.1).

3.2.3. Mixed form blocks
Finally we examined performance in mixed form

blocks. Data from the two groups were pooled. Paired t-
tests found no significant difference between mean re-
sponse decision accuracies from complex sub-tasks in full,
complex form versus simple form, either for critical trials
[complex trials: 79.7% ± SE 3.1, simple trials: 81.5% ± SE
3.0, t(47) = 1.41, p > 0.1, d = 0.20], or for regular trials [com-
plex trials: 87.6% ± SE 2.7, simple trials: 89.6% ± SE 2.8,
t(47) = 1.62, p > 0.1, d = 0.23]. These data suggest that the
complexity effects we found were indeed driven by the
complexity of the task model established during task
instructions, not by the real-time demands of individual
trials.

3.2.4. Response times
On critical trials, participants in the chunked instruc-

tions group took, on average, 3535 ms to respond in
complex sub-tasks and 2291 ms to respond on simple
sub-tasks. Corresponding values for the interleaved
instructions group were 3602 ms for complex sub-tasks
and 2159 ms for simple sub-tasks.

On regular trials, response times for the chunked
instructions group were 3389 ms for complex sub-tasks
and 2060 ms for simple sub-tasks, with corresponding val-
ues of 3361 ms and 2010 ms for the interleaved instruc-
tions group.

3.3. Discussion

In Experiment 2, we replicated our findings from Exper-
iment 1. Response decisions were prone to errors and accu-
racies strongly correlated with Culture Fair IQ, especially
on critical trials. Major performance failures were com-
mon, with a variety of error types indicating serious failure
to use task rules. Again, such failures were not generally
explained by failure of explicit recall. We also confirmed
the pattern of complexity effects that we observed in
Experiment 1. For critical trials, both the accuracy of re-
sponse decisions as well as the frequency of major perfor-
mance failures were strongly sensitive to same sub-task
complexity, but largely insensitive to the complexity of
the other sub-task. For regular trials, unlike in Experiment
1, neither effect was significant. Again, the data suggest
that the key factor in these experiments was not the com-
plexity of all task requirements described during instruc-
tion but the complexity of a subset of the requirements
which are relevant to a single sub-task.

The results from Experiment 2, however, do not support
the hypothesis that chunking is driven by the format in
which the instructions are presented. Instructions in the
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Fig. 10. Experiment 2: Regular trials. Mean response decision accuracies (% correct) and frequency of major performance failures (MPF) for the chunked
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two groups were organised quite differently, to encourage
orthogonal forms of chunking. The performance of the two
groups, however, was closely similar.
4. Pooled data

The principal concern in our experiments was the dif-
ferential effect of same sub-task versus other sub-task
complexity. The main finding from Experiment 1, repli-
cated in Experiment 2, was a strongly significant main ef-
fect of same sub-task complexity, especially on critical
trials, but no effect of other sub-task complexity. An
inspection of Figs. 6, 9 and 10, however, suggests a small
trend toward lower accuracies for complex other sub-tasks
compared to simple other sub-tasks. We therefore re-ana-
lysed the complexity effects after pooling the data from the
standard blocks of Experiments 1 and 2. Given that we
found no effect of group in Experiment 2, we also included
the data from the interleaved instructions group.

On critical trials, mean response accuracies were ana-
lysed using a 2 (same sub-task complexity; simple, com-
plex) � 2 (other sub-task complexity; simple, complex)
repeated measures ANOVA. The main effect of same sub-
task complexity was significant [F(1,79) = 46.82 p < 0.001,
g2

p ¼ 0:37]. Both the main effect of other sub-task complex-
ity [F(1,79) = 2.14, p > 0.1, g2

p ¼ 0:03] and the interaction
[F(1,79) < 0.01, p > 0.1, g2

p < 0:01] were non-significant.
The mean frequency of major performance failures was
similarly analysed. The main effect of same sub-task com-
plexity was significant [F(1,79) = 21.58 p < 0.001,
g2

p ¼ 0:22]. Both the main effect of other sub-task complex-
ity [F(1,79) = 0.02, p > 0.1, g2

p < 0:01] and the interaction
[F(1,79) = 0.21, p > 0.1, g2
p < 0:01] were non-significant.

Therefore, even after pooling the data, the pattern of com-
plexity effects for critical trials remained unchanged.

On regular trials, data were analysed using a 2 (same
sub-task complexity; simple, complex) � 2 (other sub-task
complexity; simple, complex) repeated measures ANOVA.
The main effect of same sub-task complexity was signifi-
cant [F(1,79) = 12.67, p < 0.01, g2

p ¼ 0:14]. This time, the
main effect of other sub-task complexity was also signifi-
cant [F(1,79) = 4.47, p < 0.05, g2

p ¼ 0:04]. Their interaction
was non-significant [F(1,79) = 0.20, p > 0.1, g2

p < 0:01].
The mean frequency of major performance failures was
similarly analysed. The main effect of same sub-task com-
plexity was significant [F(1,79) = 10.01 p < 0.01, g2

p ¼ 0:11].
Both the main effect of other sub-task complexity
[F(1,79) = 1.98, p > 0.1, g2

p < 0:02] and the interaction
[F(1,79) = 2.51, p > 0.1, g2

p < 0:03] were non-significant.
After pooling the data, a small effect of other sub-task com-
plexity was now detectable on regular trials.

Importantly, we do not claim that there is no effect of
other sub-task complexity, but only that the effect of same
sub-task complexity is dominant. A final analysis directly
compared the effects of same sub-task complexity and
other sub-task complexity. To this end we compared re-
sponse decision accuracies for two cases: same sub-task
simple and other sub-task complex, vs same sub-task com-
plex and other sub-task simple. In these two conditions,
complexity of overall task instructions is matched (one
simple and one complex sub-task in each case). A
comparison of these conditions can be seen as a test of
the relative effects of same and other sub-task complexity.
For critical trials, mean accuracy in the case of same sub-
task simple/other sub-task complex was 92.4%, while
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mean accuracy for same sub-task complex/other sub-task
simple was 82.8%, a significant difference [t (79) = 3.67,
p < 0.001, d = 0.41]. For regular trials, mean accuracy in
the case of same sub-task simple/other sub-task complex
was 95.1%, while mean accuracy for same sub-task com-
plex/other sub-task simple was 91.7%. The difference was
not significant [t(47) = 1.6, p > 0.1, d = 0.20].

Similar results were obtained for major performance
failures. For critical trials, mean frequency of major perfor-
mance failures in the case of same sub-task simple/other
sub-task complex was 0.03, while that for same sub-task
complex/other sub-task simple was 0.12, a significant dif-
ference [t(79) = 3.00, p < 0.01, d = 0.34]. For regular trials,
mean frequency of major performance failures in the case
of same sub-task simple/other sub-task complex was 0.01,
while mean accuracy for same sub-task complex/other
sub-task simple was 0.04. The difference was not signifi-
cant [t(47) = 1.7, p > 0.1, d = 0.18].

Our results confirm that, for critical trials, it was the
complexity of the same sub-task that most strongly influ-
enced performance, with a similar but non-significant
trend for regular trials.

5. Task dynamics

Our failure to find an effect of instructional format de-
spite a strong manipulation led us to consider the possibil-
ity that the instruction period may be relatively less
important in the production of goal neglect. Instead actual
task structure, rather than instruction structure, may be
critical. On the account we are proposing, neglect reflects
a failure to focus on just those aspects of task knowledge
relevant to a current decision. This thought led us to con-
sider events on early trials, when task knowledge is first
used to control behaviour (Duncan et al., 1996).

Additionally, in both our experiments, the effect of
same sub-task complexity on neglect persisted even on
the simplified trials of mixed form blocks, where panel
decisions were not present. This observation also suggests
that a pattern of behaviour is constructed early during the
task and then tends to remain stable.
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Experiments 1 and 2.
In order to explore the role of early performance in task
assembly and neglect, we examined the trial-wise dynam-
ics of task performance in cases of major performance fail-
ure, defined as before as response decision accuracy at 50%
or below. Across both experiments, for critical trials there
were 78 cases, contributed by 46 of the 88 participants.
For regular trials there were 37 cases, contributed by 31
of the 88 participants.

In all these cases of major performance failure, partici-
pants typically followed a consistent strategy in the perfor-
mance blocks, with one major error type dominating
performance. We asked how participant’s strategy evolved
over the early trials. For every such case, we defined two
major response strategies – the correct strategy and the
dominant incorrect strategy. We then computed the prob-
ability on every trial, across all cases of major performance
failure, of choosing a response consistent with these
strategies.

Fig. 11 plots these probabilities separately for critical
(Fig. 11A) and regular (Fig. 11B) trials. The horizontal axis
shows trial number. Note that the first critical trial and
the first 5 regular trials are part of the practice block.
Across trials, the figure shows the probability of correct re-
sponse decision, the probability of making a response that
is consistent with the dominant incorrect strategy, and the
response time.

In these data, the probability of choosing the correct re-
sponse starts off near 0.4 and then decreases over the first
10 trials to settle close to zero. Conversely, the probability
of choosing a response consistent with the dominant incor-
rect strategy also starts off near 0.4 and increases over the
same period to asymptote close to one. Response time rap-
idly falls during these trials to settle at a stable level after
the first 10 trials.

This pattern of results shows an important role for early
performance in shaping behaviour. The data reveal an ini-
tial phase during which performance is inconsistent, with
participants being just as likely to choose the correct re-
sponse as an incorrect response. Performance becomes
increasingly stable over the first 10 or so trials as one
response rule is privileged over others. Such stabilization
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may reflect a process of automatisation in which initially
encoded rules are compiled into procedures thus reducing
cognitive demand (Neves & Anderson, 1981). We suggest
that this period represents a learning phase during which
task performance is shaped. During this period, as partici-
pants make response decisions, they have to search
through the space of task knowledge for the relevant rules.
When a sub-task contains additional panel rules, the
chance of implementing the correct response rule is re-
duced, resulting in an incorrect choice. With every trial,
the choice of behaviour becomes more stable. In cases of
major performance failure, an incorrect rule is privileged
in the final, stable performance stage.
6. General discussion

The results presented here significantly extend the ac-
count of goal neglect suggested by Duncan et al. (2008).
In that account, the critical factor is the total complexity
of task instructions. Duncan et al. (2008) viewed task mod-
el assembly as a process of encoding and storing task infor-
mation into a limited capacity working memory. As more
information is entered into the task model and this storage
capacity is filled, task rules compete for representation and
individual rules may be weakly represented and lost, lead-
ing to their neglect during performance.

This simple account does not easily explain the pattern
of complexity effects that we observe. For our tasks, this
account would predict that the neglect of a requirement
should be equally sensitive to same or other sub-task
complexity, since in either case, added panel decisions
have the same effect on total task complexity. Instead,
the effect of same sub-task complexity was substantially
stronger.

Our new account builds on a range of previous work
suggesting that task complexity is a matter not simply of
the total amount of information in a task description. Also
critical are structural relations between rules (e.g. Frye
et al., 1998), and in particular, chunking into separate task
parts (e.g. Halford et al., 2007; Newell, 1990). Reflecting
the critical role of information chunking, our account stres-
ses the creation of focused attentional episodes, dividing
complex task requirements into simpler, more manageable
parts. Such division allows even complex problems to be
solved as a series of simpler sub-problems (Sacerdoti,
1974). In the present experiments, the critical task part
was the response decision and its sensitivity to additional
panel decisions in the overall task model. Though response
and panel decisions were independent, response-decision
neglect was increased when panel decisions were added.
This effect of added complexity, however, was restricted
to panel decisions added within the same sub-task. The re-
sults suggest a failure in creation of a focused response-
decision episode when response and panel rules were con-
ceptually linked. As a result, we suggest, implementation
of the correct response rule was impaired, leading in ex-
treme cases to systematic neglect.

Our account shares some ideas with relational complex-
ity theory (Halford et al., 1998, 2007; Waltz et al., 1999)
which posits a co-ordinate system or ordering schema for
representing relations necessary for carrying out a cogni-
tive process, and proposes a mechanism of ‘segmentation’
for parsing a complex task into separate parts. In our
experiments, independent parts of a task that were con-
ceptually linked were harder to separate into separate epi-
sodes. This suggests the existence of structural
representations that relate the various steps of the decision
process. Such a representation could serve as a schema and
shape not just behaviour but also the way task knowledge
is organised. Indeed, in the interleaved instructions group
in Experiment 2, participants often spontaneously and rap-
idly re-organised instructions by sub-task during verbal re-
port suggesting the employment of such a structural
schema. A benefit of such a schema is that new tasks with
a similar structure can be learnt more quickly, by binding
new task-relevant information to the existing co-ordinate
system. On the other hand, such a structural representa-
tion may also have a deleterious effect when task structure
is variable. In the present experiments, and from the per-
spective of our chunking account, a representation of the
structural relations of the rules may have led to a higher
rate of neglect in low IQ participants as they failed to sep-
arate panel rules from response rules.

Our account is extended by an analysis of the evolution
of behaviour during early trials. In this period, action selec-
tion initially appears to be unstructured and chaotic, but is
rapidly organised into a more automatic stable strategy
that is then used for the remainder of the task. We suggest
that this initial unstructured period reflects a learning
phase and it is in this early phase of task performance that
complexity exerts its effects. As the first response decisions
are made, significant interference arises from the presence
of additional panel rules in the sub-task model. Goal ne-
glect arises when an incorrect plan of behaviour is con-
structed and stabilized.

In our tasks, what drives the chunking? In Experiment
2, we examined the hypothesis that instructional format
drives chunking but found no evidence in its support. De-
spite a strong manipulation of instructional format to dis-
courage chunking by sub-task, we found that the pattern of
complexity effects remained unchanged.

Another factor driving chunking may be temporal con-
text (Badre, Kayser, & D’Esposito, 2010; Botvinick, 2012;
Rigotti, Ben Dayan Rubin, Morrison, Salzman, & Fusi,
2010). During initial performance, the attempt to recall
task rules may be driven by the problem stimuli encoun-
tered. As participants effortfully access stored task rules
while solving initial trials, chunking may be driven by
the learning of transition probabilities specific to each
sub-task. For instance, after the ± rule for vehicles is ac-
cessed, the car/motorbike rule will always be required fol-
lowed by the lower/upper case letter rule and so on. The
open/closed book rule will never be needed after the ± rule.
Learning these temporal regularities may allow for con-
struction of separate higher level context representations
for each sub-task. At the same time, such temporal link-
ages would be a barrier for the further division of a sub-
task into component episodes (Botvinick, Niv, & Barto,
2009).

Chunking may also have been driven by the fact that the
two sub-tasks in our tasks had independent sets of rules,
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with largely independent stimulus sets. The stimuli them-
selves could directly activate the appropriate task knowl-
edge in a bottom-up manner. At the same time, the task
rules within a sub-task are all functionally linked to each
other, describing the various steps in a decision process
and thus demanding the top-down influence of a task
model for driving the search within the selected set of ac-
tion alternatives.

As in previous cases of goal neglect, we found that the
accuracy of response decisions was strongly correlated
with Culture Fair IQ. The results suggest a general ap-
proach to the problem of task complexity and its link to
fluid intelligence. In any domain, increasing task complex-
ity increases the search space of potential action alterna-
tives, and the requirement for simplifying search through
division into separate, simpler sub-tasks. In large part, we
suggest, fluid intelligence may concern this search prob-
lem, with high fluid intelligence reflecting either the capac-
ity to deal with larger information chunks, or capacity for
division of large chunks into smaller, more focused parts.
As argued earlier, a close link to goal neglect suggests a
central role of frontal lobe control processes in fluid intel-
ligence (Duncan et al., 1996). On many accounts, the fron-
tal lobe is critical in attentional control, integrating
processing in multiple brain systems to construct coherent,
focused behavioural episodes (Dehaene, Kerszberg, &
Changeux, 1998; Desimone & Duncan, 1995; Norman &
Shallice, 1980).

In summary, our results demonstrate an important role
for chunking in shaping competition between task require-
ments in the task model. We propose a new account of ne-
glect that emphasises the importance of chunking in
navigating the space of task knowledge in goal-directed
behaviour, in particular during a labile phase over the first
few trials of performance. More broadly, our results sug-
gest a general approach to the well-known link between
task complexity and fluid intelligence (Marshalek et al.,
1983). At least in large part, fluid intelligence may concern
the problem of selecting effective behaviour based on com-
plex knowledge; a problem that must generally be solved
by dividing a complex problem space into smaller, more
manageable parts.
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