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Modeling competitions are a promising method for advancing psychological science. In this commentary to
Erev et al. (Psychological Review, 2017, 124, p. 369), we highlight how this promise could be enhanced
through modifying competition structures to produce insights more directly in line with the goals of
promoting psychological knowledge. We argue that a single criterion on which models is compared limits
the diversity of models entered into competitions, restricting the number and type of insights that can be
gained consequently. We propose an alternative competition structure with multiple evaluative criteria and
outline a quantitative selection method for choosing a winner. Our proposed competition structure has the
advantages of (a) increasing the diversity of models entered, (b) incentivizing desirable qualities of models,
(c) disambiguating competition winners, and (d) enhancing the impact and possible insights gained from
competitions, all these while allowing flexibility for competition organizers to emphasize specific qualities
of models.
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Modeling competitions have become a popular research method
inmany scientific fields. Competitions have shown to be an effective
methodology for maximizing the benefit of large sets of data by
crowdsourcing modeling to multiple research groups across multi-
ple research fields. In computer science, examples of modeling
competitions have ranged from recommendation systems (Bennett &
Lanning, 2007), and bioinformatics (Goldbloom, 2010; Triguero
et al., 2015) to data mining (Weigend & Gershenfeld, 1993) and
machine learning (Sajda et al., 2003). In fact, multiple organizations
such as Drivendata (drivendata.org) and Kaggel (kaggel.com) have
been formed to utilize modeling competitions to advance solutions

to real-world problems such as disease spread, clean drinking water,
and disaster risk. This methodology has been increasingly promoted
as a means of reconciling and refining psychological theories (Erev,
Ert, & Roth, 2010; Gonzalez & Dutt, 2011; Lai et al., 2014; Lebiere
et al., 2010). In the psychological literature, variability in data
collection methods, sample characteristics, and theoretical motiva-
tions can produce contradictory examples and predictions of behav-
ioral effects (Erev et al., 2017). Modeling competitions help resolve
such contradictions by bringing competing theories together under a
unified experimental paradigm.

The goals of psychological research however do not always align
with the goals of other fields, and modeling competitions in
psychology may be disserviced by uniformly mimicking all aspects
of competitions from computer science.While machine learning, for
example, may place a stronger emphasis on the accuracy of pre-
dictions, psychological research (in addition to the paramount goal
of improving predictions) also seeks to develop deeper insights into
the processes underlying human behavior. This stems from the
broader goal in psychological research to develop and test general
theories of human behavior. Descriptive theories of behavior pos-
tulate processes and mechanisms that govern general phenomena.
But it is the quantitative nature of a theory that can make it precise
and testable (Gonzalez, 2017; Gonzalez et al., 2003). To test
theories of human behavior, we use computational models: Repre-
sentations of some or all aspects of a theory as it applies to a
particular task or context. Thus, the value of models is that they can
represent concrete problems and provide explicit mathematical and
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computational representations of a theory, which can then be used to
make predictions about behavior.
A model that can capture and explain the underlying mental

processes proposed by a theory, can be applied to make predictions
of similar behavior in different contexts, with different actors, and at
different time points. In this article, we argue that modeling com-
petitions have great potential to advance psychological theory and
practice, but that the structure of competitions in psychology can
better enable this potential by evaluating and incentivizing more
than a single prediction criterion. Specifically, we use a recent
decision-making modeling competition (Erev et al., 2017) to illus-
trate how using a single criterion to evaluate models may limit the
diversity of models entered, and consequently limit the insights that
could be gained from the competition. We also propose a method of
competition design that would mitigate these limitations in future
competitions and offer multiple advantages.
There are many reasons to like modeling competitions, including

rapid and efficient advancement using large data sets and providing
uniform comparisons between different models. This is especially
true in the modern world where large data sets, computational
power, and co-ordination between multiple researchers are increas-
ingly manageable. First, crowdsourcing science is an efficient way
to quickly advance a field. The Netflix prize awarded $1 million to
the team that won a prediction competition improving movie
recommendations (netflixprize.com). Though that seems like a large
amount of money, it prompted many thousands of work hours from
some of the best computer scientists in the world and financially was
a bargain (Hunt, 2014).1 Second, competitions can lead to rapid
improvements in very specific problems. In a bioinformatics model-
ing competition, competing models had to pick genetic markers in
HIV sequences that correlate with viral load (i.e., severity). Within a
week and a half entrants had already outperformed the best methods
in the scientific literature (Goldbloom, 2010). Third, competitions
allow for direct model comparisons in identical scenarios. Tradi-
tional modeling exercises and comparisons can become both diffi-
cult and time-consuming to evaluate, as papers vary in scope,
stimuli, data, modeling frameworks, and evaluation rules (e.g.,
González-Vallejo et al., 2012). Competitions overcome this by
making every entrant compete on comparable tests. In line with
standardizing comparisons, competitions allow for the testing of
multiple auxiliary hypotheses between models beyond the criteria
set out in the competition. For example, Lai et al. (2014) hosted a
competition to test different methods of reducing implicit racial bias.
While no intervention reliably reduced implicit bias, the comparison
of the 17 different interventions did show that interventions involv-
ing some sort of countertypical exemplars and conditioning were
less ineffective than higher-order interventions like perspective-
taking and considering egalitarian views.
With all of the possible benefits of modeling competitions for

psychology, it is important to consider the goals of modeling
competitions and how those goals can be best accomplished. There
has been previous work defining the advantages and disadvantages
of different competition structures and statistical criteria of model
selection (e.g., Spiliopoulos & Ortmann, 2014). Spiliopoulos and
Ortmann (2014) provide an extensive overview of types of modeling
competitions noting among other things that the results of competi-
tions may be sensitive to the exact criterion chosen and that a side
effect of using a uniform paradigm is a lack of generalizability. Here,
we focus on the specific question of how the evaluation criteria

affects (a) the models entered in the competition and (b) the
subsequent insights gained from competitions. To date, most model-
ing competitions in psychology compare models along one crite-
rion, predictive accuracy, using a single metric or statistical index of
goodness of fit such as mean squared deviation (MSD). Our primary
argument is that in psychology, multiple competition criteria would
increase both the diversity of models entered as well as the number
of insights that could be gained from a single competition. Addi-
tionally, we outline a quantitative method for comparing models
across multiple different criteria in the context of a competition.

To illustrate our arguments we use the Choice Prediction Com-
petition 2015 (CPC2015; Erev et al., 2017), a recent competition of
a series of modeling competitions by Erev and colleagues (Erev, Ert, &
Roth, 2010; Erev, Ert, Roth, Haruvy, et al., 2010; Plonsky et al., 2019).
We use the CPC2015 to illustrate our arguments in order to improve
future modeling competitions. We believe the CPC2015 was a
major accomplishment that has and will continue to contribute
to the understanding of the psychology of decision-making. As
direct participants of the CPC2015, we are able to retrospectively
identify how the competition could have been enhanced. In the
following section, we outline the CPC2015, discuss the main results,
and identify potential missed opportunities that resulted from the
use of a single evaluative criterion. We then outline the desirable
qualities and characteristics of psychological computational
models and present a formal method of constructing and running
future competitions with multiple evaluative criteria. Finally, we
discuss the benefits of the proposed methodology for modeling
competitions.

Summary of the CPC2015

The motivation of the CPC2015 was the proliferation of choice
anomalies in the literature of decision-making under risk, with no
real progress toward unifying models that could account for choice
behavior across different contexts. The field of decision science has
excelled at creating models to explain numerous choice anomalies
and choice in differing contexts, but these models tend to be
conceptually disconnected from one another leading to an inability
to reliably model choice in novel situations or account for multiple-
choice behaviors within one framework. In many ways, this state of
affairs in decision science resembles that of psychology many years
ago with a science-driven by exploring numerous individual phe-
nomena extensively while limiting the progress of our understand-
ing of the mind (Newell, 1973), and the suggestions of building
complete process models that can improve the level of task
integration.

A notable example of this discontinuity in risky decision-making
research is the lack of integration of the underlying processes of
decision-making in descriptive gambles—choices where the op-
tions, outcomes, and associated probabilities are given before
making a choice (accounted for by prospect theory and its many
successors and functional adaptations; e.g., Kahneman & Tversky,
1979; Tversky & Fox, 1995; Wakker, 2010), and decision-making
in experiential choice—repeated choices between options where
outcomes and probabilities are not necessarily given beforehand but

1 Interestingly, the winning algorithm was never used by Netflix as it was
too complex to implement effectively (https://medium.com/netflix-techblog/
netflix-recommendations-beyond-the-5-stars-part-1-55838468f429).
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learned through experience (accounted for by many models
Hertwig, 2015; e.g., instance-based learning theory: Gonzalez &
Dutt, 2011; Gonzalez et al., 2003). Differences in observed choices
for similar gambles when presented as one-time descriptive choices
or repeated experiential choices have been labeled the description-
experience gap (Hertwig & Erev, 2009; Hertwig et al., 2004). The
concept of a description-experience gap also led to a dichotomy of
models that either captured descriptive-based choices or experience-
based choices, but not both (see related arguments in Gonzalez &
Dutt, 2011).
The proliferation of decision-making models that account for

limited anomalies or contexts, exemplified by the description-
experience gap, motivated the creation of the CPC2015where models
would be required to account for 14 well-known choice anomalies,
specific choice scenarios where median choice is contrary to pre-
dictions of rational economic theory (e.g., the Allais Paradox,
Allais, 1953), and be tested against competing models in a new
unique data set involving descriptive and experience-based choices.
To accomplish the goals of the CPC2015, Erev and colleagues
created an experimental paradigm that could replicate known choice
anomalies across different contexts. The paradigm is a 25 trial
repeated choice task that gives participants a description of the
options they have to choose between (i.e., outcomes and probabili-
ties are stated; see Figure 1). In the first five trials, participants do not
receive feedback about the outcomes of their choices (i.e., they
make decisions from description, DFD). In trials 6–25, participants
receive feedback about the outcome of their choice on each trial
(i.e., they make decisions from experience, DFE).2 Using this
paradigm Erev et al. created 30 choice pairs that together replicated
14 well-known choice anomalies. An additional 60 problems were
created to complete the calibration data set (data made available to fit
models) and another 60 problems for the prediction data set (data
held back to test model predictions).

Although there are common methods inherited from the earlier
competitions run by Erev and colleagues (Erev, Ert, Roth, 2010;
Erev, Ert, Roth, Haruvy, et al., 2010; Erev et al., 2017; Plonsky
et al., 2018), the CPC2015 was unique in several respects. In
previous competitions, Erev and colleagues created a stimulus set
relevant to the domain being evaluated, collected data for use by
entrants to fit prospective models, provided a baseline model that
would be used as a benchmark, and evaluated models based on a
single statistical index: The MSD between model predictions and a
new prediction data set (with the same characteristics as the
calibration data set). For the CPC2015, organizers first replicated
14 well-known choice anomalies (10 in description-based choice
and 4 in experience-based choice; see Erev et al., 2017, for details)
with a single experimental paradigm. The organizers developed a
single baseline model (Best Estimate And Sampling Tools, BEAST),
that was able to capture all behavioral effects in both descriptive and
experiential choice. Then, they sent an open invitation for research-
ers to develop computational models that would do better than
BEAST, provided they could account for the 14 anomalies using a
provided data set generated through human experiments. Those
models that captured the anomalies were then submitted to a
competition, in which the lowest MSD against a new experimentally
collected data set determined the winner.

In total, the CPC2015 consisted of 14 classic choice anomalies
embedded in data from a calibration set of 90 decision problems
provided to researchers to fit their models, and data from a prediction
set of 60 problems that were withheld from researchers until after the
competition was completed.

Features, Results, and Critiques

The primary measure on which models were compared was the
MSD between model predictions and the prediction data set. The
distinction between calibration (“fit”) and prediction data sets used
by CPC2015 is a method of penalizing models that are over-fit,
though there are arguments for alternative methods of comparing
model complexity and generalizability (see Gonzalez & Dutt, 2011;
Gonzalez et al., 2011). Other criteria were part of the competition,
though they did not serve as comparisons between models. A
predominant feature of the CPC2015 was the requirement that
any qualifying model had to account for all 14 classic choice
anomalies. This requirement is in line with reproductive power
and scope (discussed more in subsequent sections), however, we
will argue that the use of this criterion as a gate to entry unduly
harmed the diversity of models entered. A final aspect of the
competition entry was the requirement for entries to submit both
the code for their model as well as a verbal description which would
be programmed by a third party based only on the verbal description.

Quantitatively, 53 research groups registered for the competition
before the deadline for registration and 25 of these groups submitted
a final model (Erev et al., 2017). With one exception, the models
that were entered into the CPC2015 could be classified as one of
three types: (a) minor extensions of the baseline model provided, (b)
variants of prospect theory, and (c) statistical or machine learning

Figure 1
Illustration of the Choice Paradigm From the CPC2015

Note. Participants are presented with two options that include descriptions
of the possible outcomes and associated probabilities and make 25 repeated
choices between the options. The first 5 choices produce no feedback (DFD)
while the final 20 choices give full feedback (DFE). See the online article for
the color version of this figure.

2 Additional modifications were added to this paradigm to replicate
decision anomalies such as ambiguity aversion and the St. Petersburg
paradox (see Erev et al., 2017, for full paradigm details). We have omitted
these details from our description for brevity.
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algorithms. Similar to previous competitions (Erev, Ert, Roth, 2010;
Erev, Ert, Roth, Haruvy, et al., 2010), all of the top-performing
models were minor variants of the baseline model. The machine
learning/statistical models uniformly performed poorly in the com-
petition (i.e., fitting the first data set near perfectly while predicting
new data poorly), while the prospect theory variants finished in the
middle of the pack. The one exception, described but not named by
Erev et al. was the Lexicographic Instance-Based Learning Model
(LIBL). We developed LIBL not with the goal of minimizing MSD,
but with the goal of creating a psychologically plausible process
model of decision-making that integrated DFD and DFE while
meeting the criteria of competition entry.3 The fact that only one
entrant deviated from either the baseline, prospect theory, or
machine learning4 reinforces the idea that the structure of the
competition led to a homogeneous group of models entered.
The main insights gained from the CPC2015were that (a) BEAST

predicted new data well using a combination of expected value and
four psychological tendencies captured in the sampling tools (pes-
simism, equal weighting bias, payoff sign sensitivity, and regret
minimization), (b) variants of prospect theory were able to account
for known anomalies but were not competitive with variants of
BEAST in predicting new data, and (c) machine learning models,
which fit the calibration data near perfectly, performed the worst in
predicting new data. Perhaps most promisingly moving forward,
results of the CPC2015 prompted the investigation into combining
behavioral models (BEAST) and machine learning models (Bourgin
et al., 2019; Plonsky et al., 2017, 2019). Based on the performance
of both machine learning models as well as BEAST, and using data
from the CPC2015, Plonsky and colleagues (as well as Bourgin
et al., 2019) have shown that using behavioral decision models to
inform the features used in machine learning algorithms can im-
prove predictive performance markedly. This idea has prompted an
additional modeling competition (Plonsky et al., 2018).
This final insight from the CPC2015 is fundamentally different

from the first three in that the ability of descriptive models to
improve machine learning models was not designed into the com-
petition but was made possible by comparing the performance of the
two different types of models on one criterion. It is this type of
unplanned insight that we believe could be enhanced in future
competitions. Whereas the CPC2015 wound up with three types
of models compared on one criterion, designing competitions with
multiple comparative criteria in a way that promotes a diverse set of
model entrants would enable a much larger set of auxiliary hypoth-
eses and ideas to be tested.
Models with differing assumptions being compared on the same

data allow better exploration of these different assumptions. In a
competition like the CPC2015, the number of auxiliary hypotheses
that could be evaluated is limited by the diversity of the models
entered. With a limited set of models and underlying model
assumptions, the number of hypotheses that could be evaluated
(and in turn the possible insights gained from the competition) was
also limited. We believe that part of this lack of diversity stemmed
from both the use of MSD as the single criterion for comparison
(incentivizing models built with the single goal of prediction while
not incentivizing other desirable qualities of a good model) and the
use of other criteria (i.e., accounting for classic anomalies) as
exclusionary variables.
The use of generalizability (accounting for all 14 choice anoma-

lies) as an exclusionary criterion eliminated generalizability

insights. One of the goals of the CPC2015 was to promote models
that can capture behavior in a diverse set of circumstances, but
without comparison criteria for generalizability, no insight on how
anomalies are captured or whether one method is better than another
are possible. Of the 28 groups who registered for the competition but
did not submit a model, many were for unrelated reasons but at least
two were groups that could not account for all 14 anomalies
(personal communication). Additionally, some anomalies were
not diagnostic with very small effects observed (one anomaly in
fact—the reflection effect—was not replicated in the competition
data, though models were required to account for the effect). It is
possible that the exclusionary structure of the 14 anomaly require-
ment prevented models from entering the competition on spurious
grounds, and that these models could have enhanced the level of
insights gained from the competition generally. Other forms of
insights (such as identifiable process assumptions) were neither
measured nor incentivized.

To remedy some of these shortcomings we suggest an alternative
competition structure with multiple criteria, all used for comparison.
Multiple comparative criteria (i.e., prediction, generalizability,
reproductive power, parsimony, etc.) without exclusionary criteria
would promote a more diverse group of model entrants, increasing
the number of implicit hypothesis tests and enhancing the insights
that could be gained from a competition. Picking a winner based on
multiple, not necessarily comparable, criteria seems a difficult task.
We propose and discuss one possible method of selection based on
social choice literature and present an argument for its superiority to
a single criterion selection rule. The only requirement for this
selection method is an ordinal ranking (including binary rankings)
of models for each criterion. In the following sections, we discuss
desirable qualities a good model should have followed by an outline
of how multiple criteria could be quantifiably instantiated in this
system along with an example of how the selection of a winner
would be carried out.

What Makes a Good Model

Before going into detail about competition criteria and how to
improve the use and insights gained by such competitions in
psychological and cognitive sciences, it is imperative to define
the characteristics of a “good” model. To frame what we consider
a good model, we outline three general criteria that are important to
psychological models along with specific aspects of those criteria
(partly adapted from Meir et al., 2014). We elaborate on these
criteria in the subsequent section. It is important to note that models
vary widely in their scope and purpose. Additionally, competitions
may vary in their goals and theoretical perspective, making some of
the following criteria more or less important. While some of the
criteria we outline here would not apply to certain models or
competitions, we believe that setting a foundation of what models
can provide is an important starting point. Following our outline of
qualities desirable in a model, we provide suggestions for quantita-
tive measures of each criterion and a method for combining multiple

3 We also submitted a second model, combining BEAST (first 5 trials) and
IBL (last 20 trials). This model (BIBL) finished second in the competition
and was statistically indistinguishable from the winning model.

4 Arguably, this was also the only model entered that was primarily
designed to account for the data with identifiable psychological processes.
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criteria into a single mechanism to select winners. We conclude by
discussing how this new method would avoid some of the short-
comings of past tournaments and would lead to future competitions
that could provide more insights and advancements to psychology
as a whole.

1. Theoretical criteria

1.1. Intuitive understanding—A model should be able
to guide intuitive predictions and interventions/
prescriptives in the real-world (see Katsikopoulos,
2014, 2020).

1.2. Broad scope—Amodel should be able to be applied
to (or easily adapted to) various scenarios/para-
digms (see Busemeyer & Wang, 2000).

2. Psychological criteria

2.1. Realistic knowledge—Predicted behavior should
not be based on information participants are not
likely to have, or is hard to obtain (Meir
et al., 2014).

2.2. Realistic capabilities—Predicted behavior should
not rely on complex computations, nontrivial prob-
abilistic reasoning, etc. (Busemeyer &
Diedrich, 2009).

2.3. Identifiable process assumptions—A model should
rely on identifiable and testable psychological pro-
cesses (Weber & Johnson, 2009).

3. Scientific criteria

3.1. Parsimony—A model should have as few para-
meters as possible, and parameters should be
meaningful (Kuhn, 1977).

3.2. Predictive power/validation—A model should be
able to predict new behavioral data with accuracy
(Busemeyer & Wang, 2000).

3.3. Reproductive power—A model should be able to
reproduce common phenomena (Erev et al., 2017).

3.4. Testability/falsifiability—A model should produce
predictions that could be falsified, or predict behav-
ior that would not happen (Popper, 1959; Roberts &
Pashler, 2000).

Though we have tried to be comprehensive, the criteria and
specific aspects of models listed above may be incomplete or
may use different language than other works on modeling and
model comparisons. Nonetheless, it is a useful guide for the
following section discussing insights that could be gained from
modeling competitions and the types of evaluation criteria possible.
As outlined in the previous section, the CPC2015 was primarily
interested in prediction (3.2), but also contained aspects relating to
replication (3.3), parsimony (3.1), scope (1.2), and intuitive under-
standing (1.1). The only prediction though was used as a compara-
tive quantitative measure, while the others were exclusionary
criteria. In the next section, we discuss each criterion in more depth,

outlining how each could be instantiated as a comparative criterion
in future competitions.

How a Multicriteria Competition Could be Established

Theoretical Criteria

As outlined previously, one dimension of a good model is the
theoretical insights a model can provide. Two important measures of
the theoretical soundness of a model include (1.1) intuitive under-
standing: How a model can guide understandable predictions or
interventions in real-world problems, and (1.2) broad scope: The
ability of the model to be applied (or adapted) to varying scenarios.
The benefits of intuitive understanding can best be illustrated by
behavioral insights teams or “nudge units” constructed by several
governments recently, which use decision-making models such as
prospect theory to help policy-makers derive more accurate intuitive
predictions of the impact of different changes in the structure or
enforcement of policy (Halpern, 2015). The CPC2015was primarily
designed for prediction, and intuitive understanding was not a
concern. The broad scope was a primary motivator of the
CPC2015, with the initial problem posed by Erev et al., that
multiple models have been proposed for multiple different para-
digms with little overlap, leading some to want a “1-800 helpline” to
guide practitioners and policy-makers knowledge of which model
applies to which problem (Erev et al., 2015). The CPC2015 orga-
nizers chose to create a new paradigm that could replicate 14
different choice anomalies in one scenario, formalizing a test of
reproductive power (3.3) rather than broad scope as defined here.

Creating a quantitative measure of each of these criteria would not
be difficult for future competitions and could be done in multiple
ways. In the same way that the CPC2015 required written descrip-
tions of models to be independently programmed, those written
descriptions could be used by independent judges to provide intui-
tive predictions to a set of scenarios. This could be quantified
differently, but the simplest suggestion would be a binary ranking
of 1 (does allow intuitive predictions) or 0 (does not provide
intuitive predictions). For intuitive understanding, this binary judg-
ment could be accompanied by a basic rubric containing public
policy choices like those encountered by behavioral insights teams
(Halpern, 2015). Using the CPC2015 entrants as an example,
variants of prospect theory would clearly provide intuitive predic-
tions, as that is a major strength of prospect theory, while machine
learning models would not necessarily provide intuitive predictions.
The binary ranking of 1 would capture this theoretical advantage of
prospect theory models over machine learning models’ lack of
intuitive prediction, without ruling machine learning models out
of the competition. Alternatively, organizers could run a parallel
experiment where participants predict behavioral data from the
calibration stimuli and are then given a description of a model
with which to revise their predictions. A model’s ability to guide
intuitive predictions toward accuracy would then be quantified by
error reduction between the two judgments.

The broad scope could be implemented as a competition criterion
in a couple of different ways. Similar to the suggestion above,
modeling teams could include an example of how the model could
be adapted to different paradigms. This could be independently
judged, with a binary 1 or 0 as above. Additionally, competition
organizers could list several paradigms with models receiving a
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score equal to the number of paradigms they can be applied to. What
is key to our ultimate comparison suggestion is an ordinal ranking of
models across multiple criteria, and a model that can be adapted to
four different paradigms does have a theoretical advantage over a
model that can only predict a single paradigm. If broad scope were a
primary concern of competition organizers, an alternative would be
to create stimuli in different paradigms that each model would have
to predict. This instantiation would include broad scope quantita-
tively into MSD, possibly limiting the entry of models that do not
easily adapt to different paradigms. An early competition (Erev, Ert, &
Roth, 2010) did just this, however, it was presented as multiple
competitions and with a few exceptions (Gonzalez & Dutt, 2011),
models were only entered into one of the three possible paradigms.
More complex methods of comparing models in terms of broad
scope, that may not limit the entry of models that do not easily adapt,
include the strong inference test (Platt, 1964) and the generalizability
criterion (Busemeyer &Wang, 2000). Both of these methods involve
a priori model predictions across a set of experimental conditions
and would be ideal candidates for quantitatively comparing models
on the criterion of broad scope.

Psychological Criteria

The psychological criteria for good models included in the
previous section are (2.1) realistic knowledge—model predictions
should not be based on information and mental representations parti-
cipants are not likely to have, (2.2) realistic capabilities—predictions
should not rely on complex computations, and (2.3) identifiable
process assumptions—a model should rely on identifiable and
testable psychological processes.
What is the benefit of developing and testing psychologically

plausible models that (attempt to) capture the underlying psycho-
logical processes and the involvement of primary cognitive mechan-
isms such as memory, recognition, attention, etc.? Such models
provide behavioral constraints on the assumptions put forward
which eventually allows for quicker modifications of existing
models and further developments (Johnson et al., 2008). For exam-
ple, Dougherty et al. (2008) mentioned that in the absence of
explicit underlying processes, there are few constraints on the
characteristics or features that a model can have. This then creates
the problem of creating and suggesting models that are incompatible
with the latent processes that they are assumed to capture.
Inspecting the outcome of any decision-making process cannot

necessarily reveal how that choice was made. Additionally, identical
choice profiles and outcomes can have different and distinctly
identifiable psychological process profiles (e.g., Willemsen et al.,
2011). Identifying such basic cognitive processes (e.g., attention,
memory, and reasoning) and implementing them into choice models
can subsequently improve inferences about decision-making (e.g.,
Oppenheimer & Kelso, 2015; Schulte-Mecklenbeck et al., 2011).
For example, poor performance in the Iowa gambling task has been
observed in a range of neuropsychological syndromes and disorders,
potentially indicating a common decision-making deficit. However,
with the use of cognitive models, such widespread and overly
generalized deficits can be decomposed into their constituent psy-
chological processes and provide useful and specific inferences
about decision-making in clinical (or other) populations (e.g.,
Busemeyer et al., 2003; Yechiam et al., 2005). Consequently, in-
ferences based on model parameters are dependent on the reliability

and accuracy of the parameter values and whether they measure the
construct that they are intended to measure. Central to this notion is
the concept of parameter recoverability, which is the ability of a
model (and model parameter estimation technique) to produce
consistent and accurate parameter estimates (see e.g., Heathcote
et al., 2015). In addition, only when we consider psychological and
cognitive processes can we move forward in the endeavor of
creating integrative and complete theories of cognition (Newell,
1973)—theories themselves cannot survive on prediction alone. A
good first step to ensure that models gauge meaningful and identifi-
able psychological constructs or processes is to compare it against
validated external measures (such as questionnaires) of the same
construct that they supposedly measure (e.g., Konstantinidis
et al., 2014).

The realistic knowledge criterion naturally reflects and acknowl-
edges the fact that any model of choice should respect and abide by
the laws of ecological suitability. The main question is whether
models that have been developed based on responses from labora-
tory participants can (a) be representative of the process or behavior
they are trying to model and (b) predict behavior in more naturalistic
scenarios (for relevant discussions, see Pleskac & Hertwig, 2014).

In practice, all three criteria could be ranked on a binary scale by
independent judges as previously suggested. In terms of identifiable
process assumptions (as we believe this is of key importance to
psychology), a competition that employed appropriate process
measures such as reaction time (RT) or process-tracing could
provide more stringent tests of model accuracy. One additional
suggestion is that modeling teams provide process predictions that
are testable in future experiments.

Scientific Criteria

The final group of criteria outlined are the scientific criteria: (3.1)
Parsimony—a model with the fewest meaningful parameters should
be considered advantageous, (3.2) Predictive power/validation—a
model should be able to predict new human behavior with accuracy,
(3.3) Reproductive power—a model should be able to reproduce
common phenomena, and (3.4) Testability/falsifiability- A model
should produce predictions that could be falsified. As outlined
previously, the CPC2015 was motivated by concerns of reproduc-
tive power but used this as an exclusionary step as opposed to an
evaluative criterion. The single criterion of the CPC2015 was MSD
which measured predictive power, and with the split fit/prediction
setup also included an aspect of parsimony, while falsifiability was
not explicitly considered in the competition. Below are suggestions
for how each of these criteria could be quantitatively instantiated in a
competition.

Parsimony is an important scientific principle that is a desired
element of models (Vandekerckhove et al., 2015). In a competition,
parsimony can be incorporated into prediction metrics through a
split fit/prediction setup as is the case in the CPC2015, compared to
statistical measures such as AIC or BIC which penalize models with
more parameters (Lewandowski & Farrell, 2011). Alternatively,
models could be rank-ordered on parsimony separately, according to
the number of free parameters. The choice of how to incorporate and
incentivize parsimony may depend on the exact type of competition
and expected model types that may be entered. Determining the
number of free parameters may be difficult as some models have
assumptions that are set, but could also be interpreted as free
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parameters that the model builders fit absent data. Additionally,
statistical models akin to machine learning may not be suitable to
parameter counting in the way a typical psychological model is. A
problem with some of the measures discussed thus far is that they do
not penalize for functional parsimony, accounting only for parame-
ter parsimony. To allow the most diverse types of models into a
competition, a method that incorporates parsimony positively into
another metric (such as MSD in the split/fit method used in the
CPC2015) may be the best choice for most competitions.
Predictive power/validation is the most common (and often most

important) criterion for modeling competitions. For that reason, we
do not need to argue one measure over another here. We anticipate
some readers may initially object to our suggestion of multicriterion
competitions because they view prediction as the most (if not the
only) important criterion for a model, and adding additional com-
parisons would only serve to weaken this one.We do not believe this
is the case. As we will illustrate in the next section, in most cases
prediction metrics will still be the most influential criterion for a
competition winner. This results from prediction measures such as
MSD providing a clear ordinal ranking of all models entered.
Reproductive power, the ability of a model to account for classic

results in the literature, is a key component of a good model. As
outlined earlier, reproductive power was the primary motivator of
the CPC2015, with multiple models designed to account for one or
two phenomena in the literature, but none being able to account for
all major decision-making phenomena. To address this concern the
CPC2015 required models to account for 14 well-known anomalies
to qualify for the competition. Compiling the list of 14 choice
anomalies and creating a paradigm that could replicate all of them
was an endeavor that will prove useful for researchers moving
forward. However, the choice of using these 14 anomalies as a gate
to entry as opposed to a criterion for comparison may have been a
detriment to the competition. First, the 14 anomaly gate led to fewer
models entered. As already stated, 53 groups registered and only 25
entered. Though there are numerous reasons for a group registering
and not entering, we know of at least two groups (personal com-
munication) that did not enter a final model because they could not
account for all 14 anomalies. This is understandable, as prior to the
CPC2015 no model had accounted for all 14. A second effect of
making the 14 anomalies a gate as opposed to a criterion is the
overabundance of BEAST variants entered into the competition. Of
the 25 entrants, 15 were variations of the provided baseline model.
Having a difficult entry standard and providing a model that can pass
that standard incentivizes teams with the goal of winning the
competition to take the baseline model and attempt to improve it
as opposed to entering a unique model. Not to say that the baseline
model is a bad model. On the contrary, it may be a very good model,
but the only conclusions that can be drawn from the competition are
that it can outpredict variants of prospect theory, machine learning
algorithms, and LIBL. If instead of using the 14 anomalies as a gate
for entry, they had been used as a criterion that models were
compared on, the insights from the CPC2015 could have been
enhanced. For example, if a model accounted for only 13 of the 14
anomalies but contained interesting assumptions that differed from
other models, those assumptions could be compared against the
underlying assumptions of other models in the competition.
To use reproductive power as an evaluative criterion, a list of

known effects would need to be compiled, as was done in the
CPC2015, and models would be ranked in one of two ways. The first

would be a simple binary ordering of models that either do or do not
account for all effects. The second, used when reproductive power is
a primary criterion of interest, would rank models based on the
number of effects they can account for. This second way of rank-
ordering models also would create a situation where a true random
baseline could be developed answering questions about the nature of
reproductive power in the models.

Falsifiability or testability is the final scientific criterion of a good
model and is one of the primary tenets of scientific advancement
(Popper, 1959). Such criteria need not be just theoretical, but can
actually be applied in these settings. Like previous criteria, this
could be a dichotomous ranking based on examples provided by
competition entrants. For psychological process models, this could
be relatively straightforward, such as proposing a process test such
as RT if the model assumes RT consistent hypotheses. Falsifiability
is a shortcoming of machine learning (Russell et al., 2010) which
would be reflected in this criterion, though recent advances in
evaluation techniques such as error terrain analysis could be argued
to approximate falsifiability (Nushi et al., 2018).

In this section, we have outlined how multiple criteria essential to
what makes a good model could be incorporated into future
modeling competitions. There are several advantages to using
multiple criteria to evaluate models in a competition. The major
advantage that we have focused on here is that it would encourage
and allow more diverse models to be entered, which in turn entails
more hypotheses that could be tested in a single framework.
Additionally, it could improve the quality of models entered by
moving away from the sole incentive of minimizing a prediction
method, incentivizing the creation of models with other desirable
qualities. The primary drawback of such a setup would be choosing
a single winner in a manner that would be both fair and emphasize
the most desirable qualities of a model (in most cases predictive
accuracy). In the following section, we propose a method for
choosing a winner in a multicriteria competition and argue that it
is superior to current single criterion methodologies.

Choosing a Winner in a Multicriteria Competition

To select a winner in a multicriteria modeling competition, we
propose using a selection method from the literature on voting and
computational social choice. There is a long history of research on
optimal rules for selecting a winner from a series of candidates with
rank-dependent scoring (Goldsmith et al., 2014). Many voting rules
are defined in the following way: Given a voting profile P
(a collection of votes, where a vote is an ordinal ranking over
alternatives), each vote contributes to the score of an alternative. The
global score of the alternative is then computed by summing up all
these contributed (“local”) scores, and finally, the alternative(s) with
the highest score win(s). The most common subclass of these
scoring rules is that of positional scoring rules: The local score
of xwith respect to vote v depends only on the rank of x in v, and the
global score of x is the sum, over all votes, of its local scores. Among
prominent scoring rules, we find the Borda rule as well as plurality,
antiplurality, and k-approval (Zwicker, 2016). However, there are
occasionally undesirable features of these scoring rules. Most
notably, the voting rules listed can choose a winner that is not
Condorcet consistent. A Condorcet method is an election method
that elects the candidate that would win a majority of the vote in all
of the head-to-head elections against each of the other candidates,
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whenever there is such a candidate. A candidate with this property is
called the Condorcet winner.
In applying these rules to modeling competitions, we consider

each criterion from the previous section (with ordinal rankings of the
candidate models), a voting profile. In the case of modeling com-
petitions, a Condorcet winner would beat every other model on a
majority of the criteria in head-to-head comparisons. Because
Condorcet consistency is such an important concept, we believe
that it should be the primary criterion for selecting a winner in a
multicriteria competition. There are other desirable qualities of the
Condorcet method though there is no need to go into them here (see
Fishburn & Gehrlein, 1977, for a detailed discussion). The primary
drawback of the Condorcet methods is that there is not always a
Condorcet winner. Because of this possibility, supplementary selec-
tion rules need to be agreed upon. There have been multiple
suggestions for selection rules in the case where no Condorcet
winner is present (e.g., Peress, 2008); we believe the simplest option
appropriate for the current discussion would be a Borda rule run-off,
followed by a single criterion agreed upon beforehand.
To illustrate how this selection method would work practically,

consider hypothetical results from two simplified competitions
(Figure 2). In both competitions, the first criterion is an ordinal
ranking with no ties such as MSD. The second, fourth, and fifth
criteria are binary criteria with a model that satisfies the criteria
ranked 1 and models that fail to satisfy the criteria ranked 2.
Criterion 3 represents an ordinal ranking with ties, such as account-
ing for historical phenomena where a model could account for all
phenomena, all but one, all but two, etc.

To first establish whether a Condorcet winner is present, all
pairwise comparisons are performed with a model that is ranked
above another model in a majority of criteria being superior. For
example, in the first competition, Model 3 is superior toModel 1 as it
ranks higher thanModel 1 on three out of five criteria. These pairwise
comparisons canbe illustratedusinganedgegraph (Figure 3)wherea
model that is superior to another has a line pointing away from it to the
dominatedmodel. A tie betweenmodels would be represented with a
double-headed arrow. A Condorcet winner then would have all
possible lines pointing away from it. Examining Figure 3 it is clear
that Model 2 is a Condorcet winner in competition 1 and would be
declared the winner with no further computation.

Competition 2 does not have a Condorcet winner as Models 2 and
3 are tied (each beats the other on one criterion and they are tied on
the remaining three criteria). In this case, a Borda run-off would be
performed. In Borda rule voting, models are assigned points to their
rank on each criterion with more points for higher ranks. Because
Criteria 1 and 3 have more than two ranks, winners of these criteria
would receive an advantage. Figure 4 shows the Borda count for
each model in competition 2. In many cases, a Borda run-off would
determine a winner when no Condorcet winner was present. In this
example, however, Models 2 and 3 remain tied after the Borda
runoff. There are two possibilities in this case; one is that organizers
could agree that ties are acceptable, and two models would be
declared winners; the second alternative would be using an ordinal
criterion that the organizers believe to be the most important to
declare a final winner. In the case of the CPC2015 and many other
competitions, this would be MSD.

Note that in these two fictitious examples, the model that mini-
mized MSD more than all others is still declared the winner. The
process of getting there though opens the door for more diverse
models in the competition and more methods for comparing model
performance and testing auxiliary hypotheses, multiplying the
potential insights that could be gained from a single competition.
Additionally, the relative importance of specific criteria (i.e., pre-
diction) could still be determined by competition organizers via
binary versus rank-ordering. In the CPC2015, for example, all of the
models that qualified would be ranked 1 on a reproductive power
criterion, making the strictly ordinal prediction criterion more
discriminating. Not only would a multicriteria competition set up
improve the diversity of models entered, but this more in depth
model comparison procedure could clarify the best properties of the
ultimate winner. In the final results of the CPC2015, 12 of the top
models were statistically indistinguishable (Erev et al., 2017,
p. 389) and the winner was basically a random draw. With multiple
criteria, further comparisons have the possibility of distinguishing
competing models beyond their statistical tie. We present a more
detailed outline of setting up and running a multicriteria competition
in the Supplemental online material using the CPC2015 as an
example.

Discussion

Modeling competitions represent a scientific tool with great
promise for advancing psychological science. The early adopters
of this tool have shown that this promise can be realized in
psychology. What is needed now is a clear guide for utilizing
modeling competitions in a way that meets the specific goals of
psychology. We have used the CPC2015 as an example of both a

Figure 2
Hypothetical Competition Rankings for Two Modeling
Competitions

Competition 1

C1 C2 C3 C4 C5

Model 1 3 1 2 2 1

Model 2 1 1 1 1 1

Model 3 2 1 1 1 2

Model 4 4 2 1 1 2

Model 5 5 1 3 1 2

Competition 2

C1 C2 C3 C4 C5

Model 1 3 1 2 2 1

Model 2 1 2 1 1 1

Model 3 2 1 1 1 1

Model 4 4 2 1 1 2

Model 5 5 1 3 1 2

Note. This figure shows hypothetical rankings of five models across five
criteria (C1–C5).
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laudable competition that has provided important insights into
predicting human decisions and an example of how mimicking
competition paradigms without considering the unique goals of
psychology limits the insights that could be gained. One limitation
of CPC2015 was that it was a single criterion prediction competition
(i.e., MSD), rather than a multicriteria modeling competition. Our
main point in this commentary is that this limited interpretation of a
modeling competition constrained the variety of models entered and
subsequently the insights gained. By starting with what is desirable
in a model, we developed a list of possible quantitative criteria that
could be implemented into a multicriteria competition. Some of the
benefits of this approach are (a) more diverse models would be
entered into a competition, (b) the incentives of model design would
be expanded beyond minimizing prediction error, (c) organizers
would have the flexibility to emphasize particular criteria, (d) more

auxiliary hypotheses would be available for testing, and (e) the
ultimate winner of the competition would be less ambiguous.

Probably the most consequential insight from CPC2015 thus far
came from comparisons between BEAST and machine learning
models (e.g., Bourgin et al., 2019; Plonsky et al., 2018). It is
intriguing to imagine what insights could have been gained from
models that did not fit one of the three model categories entered.
Major decision-making models such as query theory (Johnson et al.,
2007), fuzzy-trace theory (Reyna & Brainerd, 1995), and decision
field theory (Busemeyer & Townsend, 1993) were not represented at
all. Perhaps a larger group of process-inspired models would have
led to other hypotheses or combined insights like those pursued by
Plonsky et al. (2018/2019). In outlining a proposed method for
establishing a multicriteria competition we have stated many of the
benefits and addressed all of the possible criticisms apart from one.
The one criticism of the approach we have put forth is that a
competition with multiple criteria would require more work than
a single criterion competition. This is absolutely true, however,
arranging a competition as ambitious as the CPC2015 is already a lot
of work and the possible extension of insights ultimately gained
from such a competition would hopefully outweigh the extra effort.
The supplemental online material to this article details one way the
CPC2015 could be organized as a multicriteria competition, and
depending on the goals of the organizers the extra effort could be
minimized substantially by having several of the criteria outlined
here scored by the model entrants. Additionally, with a more
inclusive and decisive criterion, organizers would have fewer
disgruntled competitors writing commentaries and may save time
on the back end!
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