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Abstract
We present a new mathematical formulation of associative learning focused on non-human animals, which we call A-
learning. Building on current animal learning theory and machine learning, A-learning is composed of two learning
equations, one for stimulus-response values and one for stimulus values (conditioned reinforcement). A third equation
implements decision-making by mapping stimulus-response values to response probabilities. We show that A-learning can
reproduce the main features of: instrumental acquisition, including the effects of signaled and unsignaled non-contingent
reinforcement; Pavlovian acquisition, including higher-order conditioning, omission training, autoshaping, and differences
in form between conditioned and unconditioned responses; acquisition of avoidance responses; acquisition and extinction of
instrumental chains and Pavlovian higher-order conditioning; Pavlovian-to-instrumental transfer; Pavlovian and instrumental
outcome revaluation effects, including insight into why these effects vary greatly with training procedures and with the
proximity of a response to the reinforcer. We discuss the differences between current theory and A-learning, such as its lack
of stimulus-stimulus and response-stimulus associations, and compare A-learning with other temporal-difference models
from machine learning, such as Q-learning, SARSA, and the actor-critic model. We conclude that A-learning may offer
a more convenient view of associative learning than current mathematical models, and point out areas that need further
development.

Keywords Associative learning · Pavlovian conditioning · Instrumental conditioning · Mathematical model ·
Conditioned reinforcement · Outcome revaluation

In this theoretical paper, we introduce a new mathematical
formulation of associative learning theory, which we call
A-learning as it focuses on non-human animals. A-learning
builds on current theory in psychology and machine
learning, and offers two main improvements over existing
mathematical models. First, it shows that associative
learning can take into account the future value of stimuli
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and responses, which enables the acquisition and extinction
of complex sequences of behavior. Second, A-learning
suggests how instrumental and Pavlovian learning can be
integrated into one mathematical model, which is ultimately
necessary as most learning situations include both Pavlovian
and instrumental contingencies (Mackintosh & Dickinson,
1979; Mackintosh, 1983).

The paper is structured as follows. This Introduction
summarizes the accomplishments of associative learning
theory, and its limitations. The latter concern the rela-
tionship between Pavlovian and instrumental conditioning,
which associations underlie these two kinds of learning, and
how these associations determine behavior. The Introduc-
tion concludes with a brief rationale for A-learning’s use
of temporal-difference (TD) learning algorithms (Sutton &
Barto, 2018). The Theory section presents A-learning and
compares it to current theory. The Results section applies
A-learning to associative phenomena, such as the acquisi-
tion of instrumental and Pavlovian responses and sequences
of responses, matching, behavioral contrast, Pavlovian-to-
instrumental transfer (PIT; Cartoni et al. (2016)), and out-
come revaluation. Finally, the Discussion summarizes how
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A-learning may contribute to a more complete associative
learning theory, and what developments are still necessary.

It is widely acknowledged that neither Pavlovian nor
instrumental learning can be understood with a single
kind of learning variable, be it stimulus-response (S-
R), response-stimulus (R-S), or stimulus-stimulus (S-S)
associations (Hall, 2002; Holland, 2008; Pearce, 2008).
A-learning takes the logical next step and, similarly to two-
factor theories (Mowrer, 1960; Mackintosh, 1983), attempts
to reproduce Pavlovian and instrumental learning using
two kinds of learning variables: S-R values (akin to S-
R associations) and stimulus values (blending elements of
S-S associations and conditioned reinforcement). We aim
to show that A-learning can reproduce a wide variety of
findings from simple learning principles.

State of the art

Over more than one hundred years, psychologists have
built an impressive understanding of associative learning,
covering many animal learning phenomena and implicit
learning in humans. Associative learning theory also
underpins some of the most successful applications of
psychology to animal welfare and training (McGreevy &
Boakes, 2011), and to human health (Bernstein, 1999;
Haselgrove & Hogarth, 2013; Schachtman & Reilly, 2011).
Current understanding of associative learning is based on
the following elements.

Well-established learning phenomena and experimental
paradigms These include acquisition and extinction of
responding, stimulus control (discrimination and general-
ization), associative competition (blocking, overshadowing,
etc.), conditioned reinforcement, and outcome devaluation
(Pearce, 2008; Bouton, 2016).

Theoretical reasoning around learning phenomena Such
reasoning comprises ideas about how associations change
with experience and, even more fundamentally, what
associations are learned. Current theory is mostly phrased
in terms of stimulus-response (S-R), stimulus-stimulus (S-
S), and response-outcome (R-O) associations, although
more complex constructs such as S-R-O associations are
sometimes employed (Balleine & Dickinson, 1998; Pearce,
2008; Hall, 2002; Bouton, 2016).

ApervasivedistinctionbetweenPavlovian and instrumental
learning The traditional view that Pavlovian and instru-
mental learning are separate processes (Konorski & Miller,
1937; Skinner, 1937) is still widely held among non-
specialists, and constitutes the backbone of all contem-
porary textbooks (Pearce, 2008; Frieman & Reilly, 2015;
Bouton, 2016). Although modern theorists recognize major

similarities between Pavlovian and instrumental learning,
such as the effects of contingency and associative com-
petition (Mackintosh, 1994; Pearce, 2008; Bouton, 2016),
there is a continuing effort to tease apart Pavlovian and
instrumental contributions to learning (Mackintosh, 1994;
Hall, 2002).

Mathematical models that yield insight into many phenom-
ena Mathematical models are most developed for Pavlo-
vian conditioning (Pearce, 2008; Bouton, 2016), although
the possibility of using similar principles for instrumental
learning is recognized (Bush & Mosteller, 1951; Blough,
1975). Despite efforts, there is no accepted mathemati-
cal theory that includes both Pavlovian and instrumental
learning, although there are verbal models (Dickinson,
1980; Balleine & Dickinson, 1998; Mackintosh, 1983; Hall,
2002).

Altogether, this combination of empirical data, concepts,
and models delivers a remarkably detailed understanding of
associative learning. At the same time, various phenomena
resist a satisfactory explanation, which we believe stems
from the unresolved foundational issues discussed next.

The Pavlovian-instrumental distinction is not fully
understood

The distinction is clear-cut procedurally: Pavlovian proce-
dures arrange stimulus-stimulus (S-S) contingencies (e.g.,
food is delivered after ringing a bell), while instrumental
procedures employ response-stimulus (R-S) contingencies
(e.g., food is delivered after a lever press; Mackintosh
(1994)). It has long been recognized that this apparent
simplicity hides several pitfalls. Arranging a Pavlovian con-
tingency may also introduce instrumental ones. Thus, a
dog might salivate in response to a bell that signals food
because salivation improves chewing or the taste of food—
a possibility that can be discounted only after extensive
investigation (Coleman & Gormezano, 1979). Likewise, an
instrumental contingency may induce Pavlovian ones: a rat
that learns to press a lever for food is also exposed to the
S-S contingency between the sight of the lever and the
food (Trapold & Overmier, 1972). These unintended contin-
gencies are important because most responses are sensitive
to both Pavlovian and instrumental contingencies (Mack-
intosh, 1983). Even salivation—the prototypical Pavlovian
response—can be reinforced instrumentally (Miller & Car-
mona, 1967; Shapiro & Herendeen, 1975), and even lever
pressing—the prototypical instrumental response—can be
modified by Pavlovian contingencies (Atnip, 1977). Indeed,
from the animal’s perspective, it is hard to know whether an
experiment is “Pavlovian” or “instrumental,” and thus what
to learn about. It follows that, unless very special procedures
are adopted, most learned behavior reflects both Pavlovian
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and instrumental contingencies (Hearst, 1975; Mackintosh,
1983). These facts are often stated (Mackintosh, 1994;
Balleine, 2011; Bouton, 2016), yet we lack a mathematical
model that includes both Pavlovian and instrumental effects.
Without such a model, some of the most interesting associa-
tive phenomena remain difficult to understand because they
rely on Pavlovian-instrumental interplay, such as outcome
devaluation and Pavlovian-to-instrumental transfer.

Uncertainty about associative structures

It is clear that associative learning cannot be explained using
only one kind of association (e.g., S-R or S-S), but debate
continues about the role of different kinds of associations.
Both S-R and S-S associations are deemed important in
Pavlovian conditioning, with each kind prevailing under
certain, incompletely understood circumstances (Hall,
2002; Holland, 2008). For example, first-order Pavlovian
conditioning is understood as producing primarily S-S
associations, while second-order conditioning appears to
result mainly in S-R associations (Rescorla (1973) and
Rescorla (1980); see Discussion).

Associative structures in instrumental learning are also
not fully understood. Early S-R theories (Thorndike, 1911;
Guthrie, 1942) have given way to conceptual models
that emphasize the role of response-reinforcer associations
(R-S), although some findings still fit the old theories
better (see Hall (2002) and Bouton (2016), and Outcome
Revaluation below). In particular, antecedent stimuli must
play a role in initiating instrumental responses (e.g., the
sight of a lever), which is not captured by the notion of
a response-reinforcer association. This role is commonly
described as “setting the occasion” for responses (Skinner,
1938; Bouton, 2016), but, lacking a mathematical model,
it remains unclear how exactly stimuli participate in
instrumental behavior (Mackintosh & Dickinson, 1979).

Current mathematical models neglect sequential
phenomena and response rules

Current mathematical models of associative learning leave
out phenomena that we know are important in learned
behavior. In particular, second-order Pavlovian condition-
ing shows that a CS can function as an “unconditioned”
stimulus, albeit one whose value is learned rather than
inborn (Pearce, 2008; Bouton, 2016). Such a conditioned
(learned) reinforcer is also effective on instrumental behav-
ior. For example, if a sound is paired with food, a rat
can learn to press a lever just to hear the sound (Skinner,
1938; McGreevy & Boakes, 2011). Conditioned reinforce-
ment is well-characterized conceptually, and it is also an
important tool to investigate associative learning (Rescorla,
1980; Williams, 1994a), but it is absent from mainstream

mathematical models. This omission is noteworthy for sev-
eral reasons. First, conditioned reinforcement appears fun-
damental in the acquisition of behavioral sequences (Skin-
ner, 1938; Enquist et al., 2016), with applications to both
clinical practice (Pierce & Cheney, 2013) and animal train-
ing (McGreevy & Boakes, 2011). Second, conditioned rein-
forcement straddles the Pavlovian-instrumental dichotomy,
as it can affect instrumental learning while originating from
Pavlovian contingencies (Frieman & Reilly, 2015). Model-
ing conditioned reinforcement may thus be helpful in under-
standing Pavlovian-instrumental interactions. Third, even
experiments that are not meant to investigate conditioned
reinforcers may effectively establish such reinforcers. For
example, Skinner (1934) observed that the sound of a
food delivery apparatus, which is incidentally paired with
food in many experiments, can reinforce behavior such as
approach and lever pressing even when no food is pro-
vided. In principle, any contextual or incidental stimulus
may become a conditioned reinforcer capable of affecting
learning. Thus, a mathematical model that includes condi-
tioned reinforcement may yield insight into many learning
situations.

Lastly, we note that theoretical efforts have focused on
how associations are formed, but less on how they determine
behavior. Few attempts have been made to progress beyond
Rescorla and Wagner (1972)’s statement that a stronger
association has a stronger influence on behavior. Even if
behavioral responses are of interest mainly as indices of
learning (Hall, 1994; Mackintosh, 1994), our inferences
will be uncertain if learning processes are only loosely
connected to behavior. When responding is assumed to
depend on a single association, a linear transformation
between associative strength and response rate can be
adequate (Harris, 2011; Ghirlanda & Ibadullayev, 2015;
Ghirlanda & Enquist, 2019). More elaborate proposals exist
both for single (Harris, 2011; Honey et al., 2019) and
multiple associations (Stout & Miller, 2007; Ghirlanda &
Ibadullayev, 2015; Ghirlanda, 2018), but have not gained
acceptance so far, and do not consider the interaction of
Pavlovian and instrumental learning.

Augmenting psychological theory
with temporal-difference learning

In this paper, we aim to present a new theoretical direction
that may contribute to a more complete understanding of
the remaining gray areas in associative learning. Our work
is influenced by machine learning algorithms known as
“temporal difference” (TD) models, which, similarly to
animals, can learn to obtain rewards and avoid punishment
by observing and interacting with an unknown environment.
These models have drawn significant inspiration from
animal learning theory (Sutton & Barto, 2018), but have
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so far exerted little influence over it. While TD models are
influential in behavioral neuroscience (Dayan & Niv, 2008;
Balleine et al., 2009), they have not been fully adapted to
animal learning, and few tests have been conducted (see
Sutton and Barto (1981), Ludvig et al. (2012), Enquist
et al. (2016), and Comparison With Other TD Models
below). Nevertheless, TD models may contribute to animal
learning theory in at least two ways. First, they enable us
to take into account explicitly the sequences of stimuli and
responses which form the raw data for associative learning.
For example, TD models can simulate the learning of lever
pressing for food as a sequence that includes orienting
toward and approaching the lever, pressing it, moving from
the lever to the food location, and finally ingesting the food,
even if only this last event is directly reinforcing. TDmodels
can also learn about discriminative stimuli that arise at any
point in the sequence. The analysis of behavioral sequences
is a cornerstone of experimental psychology (Skinner, 1938;
Mackintosh, 1983; Pierce & Cheney, 2013; Baum, 2017),
yet it is poorly supported by current mathematical models,
which mainly deal with the formation of single associations.

A second advantage of TD models is that, partly
because of their historical connection to psychology, they
are easy to understand in terms of familiar psychological
concepts. They make current theory more precise, rather
than replacing it with an entirely different framework. A-
learning, in particular, is a mathematical synthesis of ideas
about S-R and S-S associations, conditioned reinforcement,
and value-based decision-making. At the same time, A-
learning prompts us to rethink some traditional ideas about
associative learning. To justify this effort, we report below
novel computational and conceptual analyses of associative
learning phenomena that are difficult to understand with
current theory.

Theory

A-learning combines stimulus-response values,
stimulus values, and value-based decision-making

A-learning has been introduced in Enquist et al. (2016)
(focusing on behavioral sequence learning, violation of
expectation, and genetic predispositions) and further ana-
lyzed in Lind (2018a) (focusing on planning), and Lind et al.
(2019) (focusing on social learning). Here we focus on the
model’s conceptual structure with reference to associative
learning theory. The elementary experience based on which
the model learns is a triplet consisting of a stimulus s, a
behavior b used in response to s, and the next stimulus s′:

s → b → s′ (1)

Animals are assumed to learn from each experience through
two learning processes that operate simultaneously. The first
is stimulus-response (S-R) value learning, which uses the
experience (1) to estimate the value of responding with b

to s, written v(s → b). For example, a rat undergoing
instrumental conditioning may experience sequences like:

lever → press → food

lever → rear → no food (2)

in which case the model will learn to assign a higher
value to lever→press than to lever→rear. The equation
governing such learning, and what constitutes “value” will
be discussed below. The second learning process is stimulus
value learning, which uses the experience s → b → s′ to
estimate the value of stimulus s, written w(s). For example,
if s is a Pavlovian conditioned stimulus (CS) and s′ the
unconditioned stimulus (US), the model learns to attribute
to s′ a similar value as it attributes to s, as in the classic
example

bell → ∗ → food (3)

where ∗ signifies that any behavior can intervene between
bell and food. Stimulus value learning operates also in
instrumental situations, in which case the value attributed to
s can depend on how the animal behaves. For instance, in
example (2), the lever stimulus will acquire value only if the
animal actually presses the lever.

The two learning processes just introduced are linked by
the assumption that stimulus values influence the learning
of S-R values. This is best seen in the model’s learning
equations. The learning equation for stimulus values is:

�w(s) = αw

[
u(s′) + w(s′) − w(s)

]
(4)

where �w(s) is the change in w(s) caused by experience
(1), αw is a positive learning rate, and u(s′) is the genetically
determined primary value of s′ (often referred to as innate
or unconditioned value). For example, food ingestion will
generally have positive u value, while pain a negative u

value. Potentially, value can be attached to any stimulus,
such as sexual and social stimuli (Curio et al., 1978; Mineka
& Cook, 1988; Lind et al., 2018), and may depend on
the animal’s state. For example, female rats lever-press for
paper strips only around parturition, when they need nest
material (Oley and Slotnick (1970); see also Hauser and
Gandelman (1985)).

The learning equation for the S-R value v(s → b) is very
similar to Eq. 4:

�v(s → b) = αv

[
u(s′) + w(s′) − v(s → b)

]
(5)

where αv is a second learning rate. The presence of w(s′)
in this equation formalizes the assumption that learned
(conditioned) stimulus values can reinforce behavior in the
same way as primary value. A subtle difference between
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Eqs. 4 and 5 is that the experience s → b → s′ leads
to updating only the v(s → b) for the behavior b that
is actually used. Thus, in example Eq. 2, the experience
lever → press → food would update v(lever → food)
but not v(rear → food). On the other hand, any choice
of behavior leads to update the same w(s). For example,
w(lever) is updated after both lever→press→food and
lever→rear→no food.

To select which behavior is used in response to a
stimulus, A-learning adopts the softmax decision-making
rule, according to which the probability of choosing b in
response to s is:

Pr(s → b) = eβv(s→b)

∑
b′ eβv(s→b′) (6)

where the sum runs over all possible behaviors. According
to this equation, behavior b is selected more often the higher
the corresponding v(s → b) value. The parameter β > 0
regulates the trade-off between choosing the behavior with
the highest estimated value and exploring other behaviors.
With a high enough β, only the most valued behavior is
likely to be chosen, while with lower β other behaviors
are also tried out. We will see in the Results section that
Eq. 6 is consistent with many findings, such as matching
(Herrnstein, 1974; Baum, 1974) and behavioral contrast
(Reynolds, 1961; Williams, 2002).

The learning Eqs. 4 and 5 are error-correction equations
like the Rescorla and Wagner (1972) equation, whereby
over successive experiences w(s) and v(s → b) approach
asymptotically the expected value of the following stimulus,
including its primary and stimulus values. More precisely,
it can be proved that, over many learning experiences
in an environment with fixed statistical properties, w(s)

approaches:

w(s) →
∑

s′
Pr(s′)

(
u(s′) + w(s′)

)
(7)

where Pr(s′) is the probability that s′ follows s, and
the sum runs over all possible s′ (Enquist et al., 2016;
Sutton & Barto, 2018). Behaviors used in between stimuli
do not appear explicitly in Eqs. 4 and 7, but they
may nevertheless influence stimulus values by partly
determining the sequence of experienced stimuli, such as in
instrumental situations like example (2). Similarly to Eq. 7,
v(s → b) approaches:

v(s → b) →
∑

s′
Pr(b → s′)

(
u(s′) + w(s′)

)

where Pr(b, s′) is the probability that b is chosen and then s′
is experienced (Enquist et al., 2016; Sutton & Barto, 2018).

The sequential nature of learning

A crucial aspect of A-learning, shared with other TD
models, is that stimulus value and S-R value learning can
gather knowledge about the future value of stimuli and
responses (Wiering, 2005; Enquist et al., 2016; Sutton
& Barto, 2018). This enables the model to predict the
occurrence of future reinforcement based on stimuli that are
not immediately contiguous with it, and to learn extended
sequences of actions in order to obtain reinforcement. As
an example, consider the partial reinforcement-extinction
effect (PREE, see Mackintosh (1974), Pearce (2008), and
Bouton (2016)). This is the finding that responses that are
reinforced only some of the time extinguish more slowly
than responses that are reinforced every time, as shown
in Fig. 1 based on a simulation with A-learning. This
persistence seems paradoxical because responding is less
valuable under partial reinforcement, but it may emerge as
follows.

During learning, an animal trained under continuous
reinforcement experiences sequences of stimuli of the form:

. . . → s → s+ → s → s+ → s → s+ → s → s+ → . . .

(8)

where s represents all stimuli in the experimental situation,
such as a Skinner box with a lever, and s+ a reward,
such as a food pellet. In between each s and s+, a trained
animal performs a response b, such as a lever press. We
have not indicated responses in Eq. 8 to facilitate reasoning
about stimulus values. Although only s+ is rewarding, the
sequence in (8) leads to increasing stimulus values for both
w(s) and w(s+). The growth of w(s) is caused by the fact
that s precedes s+, while the growth of w(s+) is secondary
to the growth of w(s). Once w(s) > 0, in fact, Eq. 4 begins
to attribute additional value to s+ as a predictor of the now
valuable s. In other words, s+ becomes valuable because it
predicts, via an intermediate step, the future occurrence of
another s+.

Under partial reinforcement, a third stimulus occurs,
which we write s0 and which represents the animal’s
perceptions after a non-rewarded response, such as the
sound of the lever press without the sounds that accompany
food delivery (see Pearce et al. (1997), for a similar
suggestion). Thus, the stimulus sequence experienced
during partial reinforcement is:

. . . → s → s+ → s → s0 → s → s+ →

. . . → s → s0 → s → s+ → . . . (9)

where we have assumed for illustration that every other
response is rewarded (fixed-ratio 2 schedule). In this
case, A-learning predicts that s0 should acquire stimulus
value, because it also predicts the future occurrence of
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Fig. 1 Model simulation of the partial reinforcement-extinction effect (PREE) in instrumental learning. Partial reinforcement leads to both slower
acquisition (a) and slower extinction (b). The latter effect derives from absence of reward (stimulus s0, see text) acquiring stimulus value, under
partial but not under continuous reinforcement (c). In extinction, w(s0) reverts to 0 under both partial and continuous reinforcement, because of
the absence of primary reinforcement (d). A fixed-ratio 2 schedule is used for partial reinforcement, requiring two responses for each reward.
Simulation script and model parameters are available online

reward (Fig. 1c). Crucially, s0 is also the stimulus that
follows responses during extinction. Thus, animals trained
under partial reinforcement will perceive the extinction
experiences s → b → s0 as rewarding, until w(s0) is driven
to zero by the absence of primary rewards in extinction
(Fig. 1d). The rewarding effect of w(s0) causes v(s → b)

to extinguish more slowly than for animals trained under
continuous reinforcement, for which w(s0) = 0 at all
times (1). We refer to Capaldi (1971), Capaldi (1994),
and Eisenberger (1992) for similar accounts and extended
discussion; our aim is simply to use the PREE as an example
of sequential effects in learning.

(During extinction, w(s0) is predicted to increase
temporarily for the continuous reinforcement group, see
Fig. 1c. The reason is that s0 is followed by s, which had
acquired stimulus value during training.)

Associative competition

Associative competition refers to the fact that learning about
one stimulus may be affected by concurrent or previous
learning about other stimuli, such as in overshadowing,
blocking, and related phenomena (Pearce, 2008; Bouton,
2016). According to the landmark Rescorla and Wagner
(1972) model, associative competition occurs because a US

can condition only a finite amount of associative strength
across all CSs. Thus, CSs trained concurrently will accrue
a weaker association than if had been trained each on their
own (overshadowing), and a CS will not gain associative
strength when accompanied by other CSs that are already
strongly associated with the US (blocking). This account
can be interpreted in terms of predictiveness: because a US
cannot be predicted more than perfectly, CSs compete for a
finite amount of predictive power. A-learning embodies the
same computational principles, which are readily expressed
in terms of value: the total S-R value that a US can condition
cannot exceed its own value (including learned stimulus
value). Formally, we first assume that the v value of a
compound stimulus is computed as the sum of the v values
of its components:

v(s1, s2, . . . , sn → b) =
n∑

i

v(si → b) (10)

where s1, s2, . . . , sn denotes stimuli s1 to sn presented
simultaneously. The same sum rule applies to u and
w values. Next, we assume that an experience with a
compound stimulus leads to learning about each of its
components, according to:

�v(si → b) = αv

[
u(s′) − v(s1, s2, . . . , sn → b)

]
(11)
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and similarly for w values (see Enquist et al. (2016),
for extensions to stimuli with different salience and to
continuous stimulus dimensions). As anticipated, Eqs. 10
and 11 follow the same principles as the corresponding
equations in the Rescorla and Wagner (1972) model, which
A-learning adopts also for instrumental conditioning. As
a consequence, A-learning covers the same phenomena of
associative competition as the Rescorla and Wagner (1972)
model, such as overshadowing, blocking, conditioned
inhibition, and relative validity (Pearce, 2008; Bouton,
2016), and readily reproduces the observation that the same
phenomena also arise in instrumental learning. The Rescorla
and Wagner (1972) picture of associative competition is not
perfect (Miller et al., 1995; Pearce & Bouton, 2001), which
we leave to future work.

Comparison with current theory

The S-R values and stimulus values in A-learning can
be compared with more traditional concepts. S-R values
can be considered a mathematical formalization of S-R
associations, as the following fundamental properties of S-R
values are also true of S-R associations:

• S-R value v(s → b) is updated only when response b is
used to stimulus s.

• A larger v(s → b) translates into a higher probability
of performing b in response to s (via Eq. 6).1

• The magnitude of v(s → b) reflects the amount of
reinforcement that is expected from responding to s

with b (see text around Eq. 7).

The main differences between S-R values and traditional
S-R associations are that S-R values are defined mathemati-
cally, both in what they represent (the expected value of the
next stimulus), and in how they lead to behavioral decisions
(through Eq. 6). Additionally, we have assumed that learned
stimulus values (w) affect S-R values in the same way as
primary values (u).

A-learning is not a simple S-R theory, however, because
it also includes stimulus values. Above we introduced stim-
ulus values as a mathematical formalization of conditioned
reinforcement, but they also share properties with tradi-
tional S-S associations. Most importantly, stimulus values
are learned based on S-S contingencies (Pavlovian contin-
gencies) and reflect the value of forthcoming stimuli in

1Early S-R theories considered a single stimulus-response link and
were formulated directly in terms of response probability rather than
S-R associations (Estes, 1950; Bush & Mosteller, 1951; Atkinson &
Estes, ). The latter have prevailed, however, because they extend more
readily to situations with many stimuli (Rescorla & Wagner, 1972;
Mackintosh, 1983).

a similar way as the strength of S-S associations reflects
CS-US contingencies and US value. For example, in Pavlo-
vian conditioning with only one CS and US, Eq. 7 reduces
to

w(CS) = pu(US) (12)

where p is the probability that the US follows the CS,
and we have assumed for simplicity that the US has no
conditioned value. Thus w(CS) will be stronger for a US
of a higher value, and for a consistently presented US
(higher p).

The main difference between stimulus values and S-
S associations is that stimulus values influence behavior
indirectly, by influencing S-R values (Eq. 5) rather than
by entering the decision function (Eq. 6). This leads to
several unique predictions, as discussed below in Pavlovian
Acquisition and Outcome Revaluation. Another difference
between stimulus values and S-S associations is that each
stimulus s has only one value, w(s), whereas it could
participate in many S-S associations. The latter allows
a richer representation of the environment, but it also
introduces theoretical complications. For example, under
partial reinforcement a CS is followed by both reinforcing
(US) and non-reinforcing stimuli (no-US, see previous
section). Should a CS→no-US experience result in the
decrease of the CS-US association, as in the Rescorla and
Wagner (1972) model, or in the increase of a CS-no-US
association, as considered by Konorski (1967) and Pearce
and Hall (1980)? The argument holds even more strongly
for different amounts of the same reinforcement: Does a
food pellet remain the same stimulus if its size is doubled
or halved, or is it treated as a new stimulus entering its own
associations? A-learning avoids these difficulties because
any stimulus that follows s affects, unambiguously, the
single stimulus value w(s).

In summary, A-learning’s largest departures from current
animal learning theory lie in giving more weight to S-R
associations (in the form of S-R values) and in replacing
S-S associations with stimulus values. We will show in
Results that the interplay of S-R values and stimulus values
generates a remarkably rich phenomenology.

Simulation software and statistical analyses

The simulations below were performed with lesim2, a
learning simulator that implements several learning models
and provides a scripting language for the specification of
intra- and inter-trial events. The simulator is available at
https://learningsimulator.org, while simulation scripts are
available at https://osf.io/b8mez. Typical values of model
parameters are displayed in Table 1.
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Table 1 Typical values of simulation parameters. Exceptions are noted
in the text. Exact values for all simulations are in the scripts available
online. Behavior costs are subtracted to primary values and stimulus
values in Eqs. 4 and 5

Parameter Values

Number of subjects per simulation 100–500

Learning rate for stimulus values, αw in Eq. 4 0.05, 0.1

Learning rate for S-R values, αv in Eq. 5 0.05, 0.1

Decision making parameter, β in Eq. 6 1–1.5

Reinforcement value of positive stimuli (e.g., food) 5–10

Reinforcement value of negative stimuli −400

(e.g., illness, shock)

Cost of behavior (e.g., lever pressing, CR) 0–2

Results

In this section, we illustrate how Eqs. 4, 5, and 6 reproduce
a diversity of Pavlovian and instrumental phenomena. In
the impossibility of covering the whole field of associative
learning, we have selected findings according to following
criteria:

• Fundamental findings, such as Pavlovian and instru-
mental acquisition.

• Findings showing how A-learning may overcome the
limits of traditional S-R theories even though it lacks
S-S and R-S associations, such as the effect of non-
contingent reinforcement on instrumental responding,
and outcome revaluation.

• Findings that reveal surprising features of A-learning
that, nevertheless, may agree with data. An example is
A-learning’s account of Pavlovian acquisition in terms
of S-R associations shaped by genetic predispositions.
Another example is A-learning’s explanation of out-
come revaluation as deriving from the action of stimulus
values, rather than from S-S associations.

• Findings that challenge current theory because they
reflect the action of multiple associations (or, in A-
learning, multiple S-R values, and stimulus values).
Examples are the acquisition and extinction of instru-
mental chains and Pavlovian higher-order conditioning,
Pavlovian-to-instrumental transfer, and, again, outcome
revaluation.

Our central message is that augmenting S-R learning with
stimulus value learning and a well-defined decision function
provides a transparent explanation for many major findings.

Acquisition of responses

Since the work of Konorski and Miller (1937) and
Skinner (1937), psychologists have distinguished between

learning about response-reinforcer contingencies (instru-
mental) vs. CS-US contingencies (Pavlovian). A-learning
explores the hypothesis that both arise from the same prin-
ciples, S-R value learning and stimulus value learning, with
the only difference that Pavlovian learning is more strongly
determined by genetic influences on learning and decision-
making. This departure from current thinking has been
motivated in part by a reanalysis of Pavlovian conditioning
data by Ghirlanda and Enquist (2019), which we summa-
rize in Pavlovian Acquisition below (see also Gallistel et al.
2004).

Instrumental acquisition

A-learning’s account of simple instrumental learning is
similar to classic theories such as the law of effect
(Thorndike, 1911; Baum, 1973). Namely, experiences of the
form s → b →reward increase the S-R value v(s → b),
which, owing to the decision-making rule in Eq. 6, results
in increased probability of choosing b in response to s

(Fig. 2a). Once popular, this account fell out of favor due
mainly to three observations (Hall, 2002). The first is that
a pure S-R relationship would not contain any information
about the reinforcer, which contrasts with observations
that animals can be sensitive to changes in reinforcer
value. This objection is covered in Outcome Revaluation
below. A related objection is that animals react visibly
to omissions of expected reinforcers, which would seem
impossible based on S-R associations alone (Pearce, 2008).
A learning equation such as Eq. 5, however, assumes that
the animal can compute the difference between expected
and actual value (Rescorla & Wagner, 1972), say δ =
u(s′) + w(s′) − v(s → b). This difference can be assumed
to elicit specific behaviors, such as search of the missing
reinforcer or aggression toward a conspecific (Dollard et al.,
1939; McFarland, 1971; Mackintosh, 1974). For example,
adding δ to the S-R value for search behavior would result in
the decision function (6) selecting such behavior more often
after the omission of a reinforcer (Enquist et al., 2016, see
also). In other words, while A-learning does not “expect” a
specific forthcoming stimulus s′, it does “expect” a specific
value for this stimulus.

The third objection to S-R accounts of instrumental
learning regards the effects of “free” reinforcement, that
is, reinforcement delivered independent of the animal’s
behavior. For example, Hammond (1980) trained rats to
lever-press for water, and then observed a reduction of
lever-pressing when rats began receiving free water as well.
Because the delivery of free water does not change the
lever→press association, this finding seems to defy an S-R
account. However, free water can increase the association
between the lever stimulus (which is still perceived when
free water is delivered) and other behavior. In A-learning,
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Fig. 2 Acquisition of instrumental and Pavlovian responses in A-
learning. a Instrumental responses are learned by trial and error based
on the growth of S-R values according to Eq. 5. b Pavlovian con-
ditioned responses (CRs) are also learned according to Eq. 5, but
which response is learned is determined more strongly by genetic

predispositions. Three acquisition curves are shown, corresponding to
genetic influences that constrain learning to the appropriate CR, that
multiply the value of the CR, and that add to the value of the CR. See
text around Eq. 14 for details. Simulation scripts and model parameters
are available online

other behavior competes with lever pressing according to
Eq. 6, which in this case yields

Pr(lever → press) = eβv(lever→press)

eβv(lever→press) + eβv(lever→other)
(13)

where “other” describes all behavior different from
lever-pressing. Writing x = eβv(lever→press) and y =
eβv(lever→other) simplifies this equation into x/(x+y), show-
ing that an increase in the value of other behavior (y) leads
to a decrease in the probability of lever pressing, even if the
value of lever pressing remains unchanged.

Taking into account decision-making may also explain
the results by Dickinson and Charnock (1985) shown in
Fig. 3a. These authors trained two groups of rats to lever-
press for food, and then introduced free food in two ways.
In group Signaled, free food was always preceded by a
white noise, while in group Random the noise and free food
were uncorrelated. Lever pressing decreased in both groups,
but the decrease was smaller in group Signal. Current
theory offers the following account (Dickinson & Charnock,
1985; Pearce, 2008). First, free food is assumed to reduce
lever pressing by strengthening a context→reinforcer
association that interferes with a lever pressing→reinforcer
association. Second, the noise stimulus is assumed to
overshadow the context→reinforcer association, decreasing
its interference with lever pressing. This explanation
allows S-S associations (context-reinforcer) to compete
with R-S associations (lever pressing-reinforcer), which
is not entirely satisfactory because in other situations
S-S associations have been assumed to potentiate R-S
associations rather than compete with them (see Pavlovian-
to-Instrumental Transfer).

A-learning offers a simpler account based on overshad-
owing between stimuli. Figure 3b shows our replication of
Dickinson and Charkov’s (1985) data. In addition, Fig. 3c
and d show that v(lever → press) attains the same value

in both groups, but v(lever → other) is lower in group
Signaled. Hence, in group Signaled, lever pressing has less
competition from other behavior when the decision rule in
Eq. 6 is applied, leading to higher rates of lever pressing.
The reason why v(lever → other) is lower in group Sig-
naled is that, in this group, the signal co-occurs with the
lever on all trials, which leads to the signal overshadowing
the lever as a cause of free food. In group Random, this
overshadowing effect is smaller because the lever co-occurs
with the signal only on half of the trials.

Pavlovian acquisition

We consider three theoretical issues around Pavlovian
acquisition: what events trigger learning, what is learned,
and what form the CR takes. A-learning’s account of
Pavlovian learning will be unfamiliar at first, and we
ask the reader to keep an open mind. In current theory,
Pavlovian acquisition has two properties. First, the CR
primarily reflects the strength of a CS-US association.
Second, the CS-US association is updated at every CS-US
experience. Neither is true in A-learning. First, Pavlovian
responses reflect the growth of S-R values, in the same
way as instrumental responses. These values are made
sensitive to CS-US contingencies, rather than to response-
reinforcer contingencies, by an appropriate choice of model
parameters. Second, S-R values are updated only when
the CR occurs, rather than at every CS-US experience.
In the remainder of this section we show how A-
learning reproduces Pavlovian acquisition, including CR
form, omission training, and autoshaping. Other Pavlovian
phenomena are discussed later, such as outcome revaluation
and higher-order conditioning.

Pavlovian acquisition as S-R value learning Empirical data
and simulation results regarding the effect of signaled vs.
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unsignaled free reinforcement on instrumental behavior.
This is not sufficient in Pavlovian learning. Suppose, for
simplicity, that only two responses to the CS are available:
CR and no-CR. Because the US occurs regardless of
behavior, it would reinforce equally CR and no-CR and lead
to at most 50% CR frequency—yet data commonly show
frequencies near 100%. Moreover, if n > 2 responses are
possible, all would be reinforced, and the CR would attain
a frequency of only 1/n. We can avoid this incorrect result
by setting model parameters appropriately. Several kinds of
settings can produce a high frequency of CRs. For example,
we can set different values of the learning rate αv in Eq. 5
for CR and no-CR:

αv(CR) > 0

αv(no-CR) = 0 (14)

This choice allows the US to reinforce only the CS→CR
value, leading to a robust CR as shown in Fig. 2b. A similar
outcome can be obtained by biasing decision-making rather
than learning. For example, if β(no-CR) = 1 in Eq. 6 and
β(CR) > 1, then the CR will be chosen more often and it
will accrue more value (Fig. 2b). Decision making can also
be biased by adding a fixed value to the CR, as suggested by

Baum (1974) to account for bias in instrumental responding
(see Eq. 18 and surrounding text). In summary, appropriate
settings of model parameters enable the US to reinforce the
CR primarily or exclusively, leading to high CR frequency
even though the US follows other responses as well.

The course of CR acquisition Between the 1930’s and
1970’s, a consensus emerged that the acquisition of CS-US
associations proceeds based on the experience of CS-US
pairings, regardless of whether CRs occur. In A-learning,
however, changes in the S-R value v(CS → CR) occur
only when a CR is performed. As a consequence, A-learning
predicts larger gaps between CRs early in learning, when
CR probability is low, compared to a theory in which
CR probability increases with every trial. In Ghirlanda and
Enquist (2019), we developed quantitative methods to dis-
tinguish between these two scenarios and applied them
to acquisition data from pigeons, rabbits, and rats. The
data were most compatible with the hypothesis that CR
probability increases only when a CR is performed, rather
than on every trial. We also showed that traditional argu-
ments against this hypothesis (from response prevention
studies, omission training, and sensory preconditioning)
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are not sufficient to reject it, either because the data is
ambiguous or because of known conceptual flaws (Mack-
intosh, 1974; 1983). Overall, A-learning’s prediction that
CRs are necessary for Pavlovian learning, while unortho-
dox, appears compatible with available data (Ghirlanda &
Enquist, 2019, for details, see). Note that the smooth acqui-
sition curves graphed in the present paper represent average
response probability (for example: Fig. 2b). In individual
acquisition curves, response probability increases only on
trials when a CR is performed.

CR form and behavior systems The parameter settings that
yield Pavlovian conditioning in A-learning may appear ad
hoc, yet they reflect the biological organization of learning
(Domjan 1993; Timberlake 1983, 1994; Fanselow 1989,
1994; Shettleworth 1994), as revealed by the fact the form
of the CR depends jointly on the CS and US in a manner
that makes functional sense. For example, gastric distress
(US) following food consumption (CS) regularly produces
food aversion (CR), but not other possible responses such
as startle or approach to the food location. Moreover, the
CR need not be identical to the UR. For example, Holland
(1977) found that, in rats, the CR to a light that signals food
is inspection of the light (similar to the UR to food), while
the CR to a tone CS is head jerking. These CRs appear
functional, as head-jerking is useful to locate the source of
a sound, while inspecting visual cues associated with food
is conducive to finding food. These and similar findings
are only loosely integrated with the view that Pavlovian
conditioning depends primarily on a CS-US association. If
this were the case, the CRs that a CS can elicit would be
identical to the URs elicited by the US (Hall, 2002), or
at least to some of them (Wagner (1981); but see Honey
et al. (2019), for a recent proposal). In A-learning, on the
other hand, we can structure model parameters to produce
the appropriate CR to every CS-US pair. For example, to
reproduce the results in Holland (1977) we can set:

αv(tone, head-jerk, food) > 0

αv(tone, inspect, food) = 0

αv(light, head-jerk, food) = 0

αv(light, inspect, food) > 0 (15)

These settings prevent the growth of v(tone → inspect) and
v(light → head-jerk) when the tone and light are followed
by food, leading to the observed CR specificity (Fig. 4).
We can account for constraints on instrumental learning
in the same way, such that a reinforcer is most effective
on behavior that is naturally related to that reinforcer
(Shettleworth 1975, 1978; Domjan 1993; Roper 1983).

Omission Training and Autoshaping By structuring
model parameters, A-learning can also exhibit Pavlovian
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Fig. 4 CR form as a function of the CS-US pair in a replication of
Holland (1977). In this experiment, a light and a tone predicted the
same US (food pellets), but rats acquired different CRs to the two
stimuli: head-jerk to the tone and inspection to the light. The graph
shows this result in model simulations with the learning rates in Eq. 15.
Simulation scripts and model parameters are available online

phenomena that are believed to contradict S-R theories,
such as omission training and autoshaping (Mackintosh,
1983; Pearce, 2008). In omission training, a CR can persist
despite preventing a positive US. For example, a rat can
persist in licking a tube through which sucrose is delivered,
even if doing so cancels sucrose delivery (Patten and Rudy
(1967); see Gormezano and Hiller (1972), Lucas (1975),
and Locurto et al. (1976) for other examples). Omission
training, however, can also be effective in decreasing or
abolishing a CR (Locurto et al., 1976; Eldridge & Pear,
1987; Sanabria et al., 2006; Poling & Poling, 1978). This
variability in outcomes is not well understood, partly
because omission training pits Pavlovian and instrumental
contingencies against each other, which current theory
does not handle easily. In exploratory simulations with
A-learning, we have produced various levels of CR main-
tenance. For example, the CS may acquire stimulus value
on no-CR trials (ending with the US), which can reinforce
the CR or behaviors that precede the CR, such as approach
to the CS location (Lucas, 1975; Eldridge & Pear, 1987).
Additionally, the US may have asymmetrical effects on
different behaviors. For example, approach to a response
key may be more easily reinforced by food than withdrawal
from the key, hence the effect of non-reinforcement may
be smaller than those of reinforcement. If these conditions
do not hold, however, omission training is predicted to be
effective and to lead to CR extinction. Some of these pre-
liminary results are in Fig. 5, and may be the starting point
for a future, more systematic investigation.

In autoshaping, a response to a CS develops even
though it is not required to yield the US. For example,
pigeons will come to peck a key that is lit just before
food delivery (Brown & Jenkins, 1968), and rats will
come to contact a lever that is introduced just before
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Fig. 5 Responding under omission training in A-learning, compared
to responding under standard Pavlovian conditioning. In all cases, the
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is 0.01 (see text around Eq. 14). a CRs do not terminate the CS. b

CRs terminate the CS. c. CRs terminate the CS, but the CR has a
baseline higher probability of being selected, compared to alterna-
tive responses. Simulation scripts and model parameters are available
online

food delivery (Boakes, 1977). Autoshaping is generally
consistent with the behavior system approach as autoshaped
CRs make functional sense: a pigeon typically benefits
from pecking visual stimuli that precede the ingestion of
food (these usually come from the food itself), and a
rat from approaching them. Mechanistically, autoshaped
CRs can arise in A-learning through the same kinds of
predispositions discussed above in the cases of Pavlovian
acquisition and omission training. For example, pecking can
be selected more often than other responses if it is given a
higher β value in Eq. 6, even if it has the same S-R value as
other responses, similarly to what is shown in Fig. 2b, gray
line. These remarks do not cover the extensive literature
on omission training and autoshaping, but are encouraging
as they emerge from a coherent pattern of setting model
parameters to reflect genetic influences on learning (see also
Enquist et al. 2016).

Avoidance responses

An avoidance response prevents or postpones a negative
event, like a lever press that postpones an electric shock.
Theories of avoidance learning must explain how a response
can be reinforced by the absence of an event that would have
otherwise occurred (see Herrnstein (1969) and Mackintosh
(1983), for extended discussion). For this reason, avoidance
responses have been sometimes considered as Pavlovian
CRs that are automatically triggered by CS-US experiences
(Bolles, 1970). For example, a stimulus that signals shock
may cause increased activity in a rat, which may facilitate
the accidental performance of the response that cancels
the shock. At least two findings, however, prevent a
purely Pavlovian account. First, animals can learn avoidance
responses that do not resemble CRs to the US, such
as lever pressing (although these may be are harder to
learn; Mackintosh (1983)). Second, in most cases, much
higher response rates are obtained when the response is

actually instrumental in avoiding the negative consequence
(Herrnstein, 1969). If only the Pavlovian contingency
mattered, the same rate of avoidance CRs would occur
regardless of whether they avoid the US. Partly for these
reasons, two-factor theories of avoidance have been popular
(Mowrer, 1960; Herrnstein, 1969; Mackintosh, 1983; Maia,
2010). In these theories, a stimulus signaling a negative
consequence would first become a Pavlovian CS triggering
a CR consisting of a negative subjective state, such as fear or
anxiety. Then, the avoidance response would be reinforced
instrumentally, because it removes the CS, and with it the
negative state. However, avoidance responses can be learned
even if they do not terminate a CS, at least not an overt
one. For example, rats can learn to press a lever in order to
postpone unsignaled shocks that would otherwise occur at
regular intervals (Sidman, 1953).

A-learning can learn avoidance responses with no special
assumptions. Figure 6a shows results from simulations in
which an initially neutral stimulus, referred to as the CS
and lasting two time steps, signals the delivery of a negative
US. One response, referred to as the avoidance response,
terminates the trial and cancels US delivery. Four other
response are also available, which have no effect. The
avoidance response is acquired not because it is directly
reinforced, but because every other response is punished by
the negative US (Bolles, 1970). This is sufficient to produce
robust avoidance because A-learning’s decision function,
Eq. 6, can select with high probability a response with zero
value (or even negative value), provided the alternatives
have even lower values (Fig. 6b).

A-learning also predicts the finding that an avoidance
response is more difficult to learn if it does not terminate
the CS (Fig. 6c). The reason is that the CS acquires negative
value because it predicts the US. Thus, an avoidance
response that does not terminate the CS is punished by the
continuation of the CS, even if not as much as the other
responses, which are punished both by the CS and the US.
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Fig. 6 Avoidance learning. a Acquisition of an avoidance response
that terminates a trial, at the end of which a negative stimulus would
have occurred. b S-R values underlying the results in the previous
panel. c Comparison between learning a response that both cancels a
negative stimulus and terminates a warning CS (black line, same simu-
lation as panel a) and a response that cancels the negative stimulus but
lets the warning CS continue for the entire scheduled duration (gray
line). d Different speed of acquisition of an avoidance response that is

genetically predisposed (gray line), one that is not predisposed (black
line, same simulations as in a and c) and one that is opposed by genetic
predispositions. In all simulations, a trial lasts three time steps, the
first two presenting a warning CS and the last one a negative stimulus
(u = −10). A positive genetic predisposition is modeled as adding a
fixed value of 1 to the S-R value of the avoidance response. A nega-
tive predisposition subtracts a value of 5. Simulation scripts and model
parameters are available online

Lastly, A-learning readily accommodates the finding that
unconditioned responses can either promote or interfere
with avoidance learning. The argument will be familiar
to the reader by now: as discussed for Pavlovian and
instrumental acquisition, stimulus-specific learning rates
and baseline response probabilities may influence what
responses are tried out in specific motivational states, and
what responses can be learned quickly (Lind et al., 2019).
If the avoidance response selected by the experimenter
is among the predisposed ones, then avoidance will be
easier to learn than if the experimenter had chosen a
response that runs counter to the animal’s predispositions
(Bolles, 1970; Mackintosh, 1983). We show this effect
in Fig. 6d, which compares avoidance responses that are
either favored or opposed by a genetic predisposition
with an avoidance response that is neither favored nor
opposed.

While we do not claim to resolve all issues around
avoidance learning with these preliminary investigations,

the results are encouraging. The above mechanisms may
also be complemented with an internal fear or anxiety
motivational state, as suggested by two-factor theory
(Mowrer (1960); see Maia (2010) for an implementation in
terms of TD learning).

Matching and behavioral contrast

Our discussion of signaled and unsignaled free reinforce-
ment and of avoidance learning highlights that a model of
decision-making may be as necessary as a model of learn-
ing for a satisfactory theory. The decision-making rule in
A-learning, Eq. 6, also generates two major phenomena:
matching and behavioral contrast. While extensive empiri-
cal knowledge exists around these phenomena (Herrnstein,
1974; Baum, 1974; Reynolds, 1961; Williams, 2002), they
are outside the scope of current theory because they depend
on establishing a precise link between learning variables and
responding.
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Matching refers to choosing behavior in proportion to the
amount of reinforcement that is gained from it (Herrnstein,
1974). Formally, the most general form of the matching law
can be written as

Pr(s → b1)

Pr(s → b2)
= k

(
r1

r2

)a

(16)

where ri is the amount of reinforcement obtained from
behavior bi , while a and k are positive parameters
(Baum, 1974). Parameter a describes whether the individual
matches behavior to reinforcement perfectly (a = 1) or
whether it displays a preference for the lower-yielding
activity (undermatching, a < 1) or for the higher-yielding
one (overmatching, a > 1). Parameter k describes whether
the individual has a reinforcement-independent bias for b1
or b2 (k > 1 or k < 1, respectively), or whether it has no
bias (k = 1). Eq. 6 implies immediately the matching law
in the absence of bias, since it leads to:

Pr(s → b1)

Pr(s → b2)
=

(
ev(s→b1)

ev(s→b2)

)β

(17)

which is identical to Eq. 16 with k = 1, a = β, and
ri = ev(s→b1), the latter meaning that theoretical values
should measure reinforcement on a logarithmic scale. The
case k �= 1 is not covered explicitly by Eq. 6, but it can be
taken into account as indicated by Baum (1974), that is by
introducing aspects of value that are intrinsic to each activity
rather than learned. In fact, if vi is the intrinsic value of bi ,
such that its total value in situation s is vi + v(s → bi),
Eq. 6 yields:

Pr(s → b1)

Pr(s → b2)
=

(
ev1

ev2

)β
(

ev(s→B1)

ev(s→b2)

)β

(18)

so that the bias term is expressed as k = eβ(v1−v2).
Furthermore, Williams (1994b) shows that the matching
law can encompass several dimensions of reinforcement
in addition to its magnitude, namely the probability of
reinforcement and the delay between the behavior and
reinforcement. These effects arise naturally in A-learning
because S-R values reflect the average reward resulting from
a behavior. This property of S-R values takes into account
the magnitude and probability of reward by definition, and
can also take into account delay because the effect of
delay is to reduce value. That is, of two behavioral options
resulting in the same reward, but with different delays, A-
learning will learn to prefer the one with the shortest delay
because this leads to a higher reward rate, provided that
A-learning perceives a cost for time that passes without a
reward.

Equation 6 can also reproduce behavioral contrast
phenomena, i.e., changes in the probability of a behavior
due to changes in the probability of other behaviors

(Reynolds, 1961; Williams, 2002). In fact, Eq. 6 implies
that Pr(s → b) will change in the opposite direction as
any of the Pr(s → b′) that appear at the denominator of
the fraction (b′ �= b). This results in at least two kinds of
contrast effects. First, a behavior will increase (decrease) in
probability whenever other behaviors that are possible in the
same situation become less (more) probable. For example,
in a Skinner box with two levers, the probability of pressing
lever 1 can be written as

Pr(box → press 1) = eβv(box→press 1)

eβv(box→press 1) + eβv(box→press 2)

(19)

where, for simplicity, we have omitted other behaviors.
Thus, a change in the value of pressing lever 2 leads to
an opposite change in the probability of pressing lever 1
(note the similarity with our account of the effects of free
reinforcement, Eq. 13, and of avoidance learning).

A second kind of behavioral contrast emerges when the
probability of responding to a stimulus changes because
of a change in the probability of responding to a different
stimulus (Reynolds, 1961; Williams, 2002). Suppose, for
example, that an animal is initially rewarded equally
for behavior b1 in response to s1, and for behavior
b2 in response to s2. After equal responding to both
stimuli is established, the reward for responding to s2 is
withdrawn. As a consequence, responding to s1 frequently
increases. This effect arises within A-learning because
extinguishing responding to s2 also extinguishes behavior
toward contextual stimuli that influence responding to s1.
That is, the two stimulus situations can be conceptualized
as s1, c and s2, c, with c summarizing common stimuli.
Because A-learning assumes that v(si, c → bj ) = v(si →
bj ) + v(c → bj ), the probability of responding to s1, c is:

Pr(s1, c→b1)= eβv(s1→b1)+βv(c→b1)

eβv(s1→b1)+βv(c→b1)+eβv(s2→b2)+βv(c→b2)

(20)

where, again, we have included only behaviors b1 and b2 for
simplicity. In addition to lowering v(s2 → b2), unrewarded
presentations of s2, c lower v(c → b2), which appears at the
denominator of Eq. 20 and thus increases Pr(s1, c → b1).
This effect is demonstrated in Fig. 7.

Behavioral sequences

In both instrumental and Pavlovian procedures, animals can
learn about extended sequences of events. In instrumental
settings, animals can learn chains of actions to obtain
rewards or avoid punishment (Skinner, 1938; Mackintosh,
1983), and in Pavlovian settings they can learn to perform
a CR in response to a CS that predicts other CSs, rather
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Fig. 7 Behavioral contrast in A-learning. a Responses b1 and b2 to
stimuli s1 and s2, respectively, are initially equally rewarded in the
same context c. After trial 200, the reward to s2 is withdrawn and, as
a consequence, responding to s1 increases. b The effect is mediated
by decrease in the S-R value v(c → b2). The magnitude of the effect

depends on the salience of the context, which is modeled as a learn-
ing rate for S-R values. In the figure, the learning rate for c is higher
than that for s1 and s2. Simulation scripts and model parameters are
available online

than directly the US (Pavlov, 1927; Rescorla, 1980). In this
section we show how A-learning reproduces instrumental
and Pavlovian sequential learning, noting that stimulus
value learning plays a crucial role in both.

Acquisition of instrumental chains

We considered instrumental chains in some detail in Enquist
et al. (2016), for example, replicating field observations by
Inoue-Nakamura and Matsuzawa (1997) regarding learning
of tool use in chimpanzees and “misbehavior” phenomena
described by Breland and Breland (1961). How A-learning
learns instrumental chains can be summarized as follows.
Suppose the sequence to be learned is:

s1 → b1 → s2 → b2 → reward

meaning that response b1 to stimulus s1 brings about stim-
ulus s2, and response b2 to s2 brings about a reward.
Learning of this chain by A-learning is illustrated in Fig. 8a,
with the second response (more proximal to the reward)
being learned more rapidly. The reason for the delayed
learning of the first response is that s2 is not initially
reinforcing, and therefore even the correct performance of
b1 does not increase the S-R value v(s1 → b1). How-
ever, every time the chain is performed correctly (which
initially occurs by chance), s2 accrues stimulus value,
w(s2), because it is followed by reward (Fig. 8c). Once
w(s2) > 0, performing b1 in response to s1 is rewarding and
v(s1 → b2) starts to grow. This account is conceptually
identical to the one by Skinner (1938), with stimulus value
as a mathematical model of conditioned reinforcement. It
is consistent with many findings about instrumental chains,
such as that the speed of learning can be improved by teach-
ing the chain backwards (backward chaining), by adding
temporary rewards at intermediate steps (forward chaining),

or by adding conditioned reinforcers at intermediate steps
(e.g., clicker training; see McGreevy and Boakes (2011), for
a survey of animal training techniques, and Enquist et al.
(2016), for model analysis).

Acquisition of Pavlovian higher-order conditioning

Let us now consider the Pavlovian analogue of instrumental
chains, that is, second- and higher-order conditioning. In
a typical second-order conditioning experiment, the animal
is first exposed to CS1 → US experiences, and then to
CS2 → CS1 experiences. During the latter, a CR to CS2
develops, which eventually extinguishes in the absence of
further US presentations. Figure 8b shows that A-learning
reproduces this typical finding. Figure 8d shows the growth
of the stimulus value w(CS1) during the first phase of the
experiment, when CS1 predicts the US, and its extinction
during the second phase, in which the US no longer appears.
This dynamics of w(CS1) is what drives the acquisition and
eventual extinction of a CR to CS2 during the second phase.
In this simulation, we have used assumption Eq. 14 to avoid
learning of behavior other than the CR. Different CRs to
CS1 and CS2 can be explained as above by setting learning
rates appropriately.

Extinction of instrumental chains

The extinction of learned behavior (Pavlovian or instrumen-
tal) is one of the most researched topics in associative learn-
ing because of its clinical relevance (Bouton et al., 2012)
and theoretical interest. The latter partly stems from the fact
that early applications of the Rescorla and Wagner (1972)
model characterized extinction as the erasure of learned
associations, and were thus unable to explain why ostensi-
bly extinguished behavior can reappear (see Rescorla, 2002;
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Bouton et al., 2012, for details). However, Delamater and
Westbrook (2014) show that the reappearance of extin-
guished behavior is consistent with the Rescorla andWagner
(1972) model, provided one allows learning about contex-
tual stimuli that accompany nominal cues. Because these
results depend on how the Rescorla and Wagner (1972)
conceptualizes associative competition, they carry over to
A-learning (see Associative competition) and we will not
consider them here. Rather, we turn to the extinction of
behavioral chains. This topic has received relatively little
attention (Thrailkill & Bouton 2015, 2016), and early notes
by Skinner (1934) are still of interest. He considered chains
of the form:

s1 → b1 → s2 → b2 → reward (21)

and argued that extinguishing the first link of the chain,
through experiences of s1 → b1 → no reward, would
leave the second link unaffected. He supported this claim
by observing that the sound of a food magazine (s2)
continues to elicit approach to the magazine (b2) even after
extinguishing the behavior that used to cause the sound
(b1; for example, lever pressing). Skinner also observed that
an extinguished first link can be reacquired by experiences
of s1 → b1 → s2 (without reward), which he attributed

to s2 having become a conditioned reinforcer during chain
acquisition. In the absence of further reward, both the
reinforcing value of s2 and the response s1 → b1 would
eventually extinguish. From these observations, Skinner
(1934) formulated the principle that “in a chain of reflexes
not ultimately reinforced only the members actually elicited
undergo extinction.” This principle is consistent with A-
learning, in which S-R values v(s → b) are modified
only when s → b is performed, while stimulus values are
updated at every experience. Figure 9 shows that A-learning
readily reproduces Skinner’s observations (panels a and b),
driven by the dynamics of w(s1) and w(s2) (panels c and d).

In seeming violation of Skinner’s principle, Thrailkill
and Bouton (2015, 2016) have recently reported that
extinction of one link of the chain can depress responding
in the other, which they interpreted in terms of response-
response associations. A-learning suggests an interpretation
compatible with Skinner’s analysis. In these experiments,
rats were trained to perform a two-link chain that can be
described as

s1, m1, m2 → b1 → s2, m1, m2 → b2 → reward

where stimuli m1 and m2 represent the instrumental
manipulanda (a chain and a lever), while s1 and s2 were two
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scripts and model parameters are available online

lights differentiating the two links. Discrimination between
s1, m1, m2 and s2, m1, m2 was not perfect, so that animals
would occasionally perform b2 during extinction of the
first link, and b1 during extinction of the second link.
According to A-learning, these experiences would lower
v(m2 → b2) and v(m1 → b1), respectively, and thus
depress responding also in the link that, nominally, did
not undergo extinction. This interpretation is supported by
the fact that extinguishing one link had no effect on the
other when only the manipulandum for the extinguished
link was present during extinction, which would prevent
the extinction of v(m2 → b2) when extinguishing the
first link, and of v(b1 → m1) when extinguishing the
second.

Extinction of Pavlovian higher-order conditioning

Classic results by Rizley and Rescorla (1972), Holland
and Rescorla (1975b), and Holland and Rescorla (1975a)

indicate that the extinction of Pavlovian second-order
conditioning is similar to that of intermediate responses in
instrumental chains. That is, extinguishing the first-order
CS has typically little effect on responding to the second-
order CS. A-learning reproduces this result in the same
way as in the instrumental case. Consider a Pavlovian
response CR2 that is established by CS1 →US pairings
followed by CS2 →CS1 pairings. Extinction of the first-
order CS through CS1→no-US pairings modifies the S-R
value v(CS1 → CR) and the stimulus valuew(CS1), but not
the S-R value v(CS2 → CR2) that determines CR2. Hence
CR2 should be unaffected by extinction of CS1. Some
studies, however, have reported a change in responding
to CS2 following the extinction of CS1 (Rashotte et al.,
1977). In A-learning, this variability has similar causes as
variability in outcome revaluation studies (extinction can be
considered a mild revaluation treatment). For this reason,
we discuss variability in results at the end of the next
section.
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Table 2 Design of a typical revaluation experiment

Phase Experiences

s1 → b1 → s2 → b2 → soutcome

1. Acquisition lever → press → pellet → eat → nutrients

2. Revaluation pellet → eat → nutrients+illness

3. Extinction lever → press → nothing

4. Reacquisition lever → press → pellet → eat → nutrients

Outcome revaluation

Observations that animals can be sensitive to changes
in the value of outcomes are central to contemporary
understanding of associative learning, as they firmly reject
simple S-R theories of both instrumental and Pavlovian
learning (Rescorla, 1980; Hall, 2002; Holland, 2008;
Balleine, 2011). Table 2 shows the typical design of an
outcome revaluation experiment featuring an instrumental
response (Pavlovian revaluation experiments are similar
and not discussed here for brevity; see online materials
for a simulation of Pavlovian revaluation). The first phase
(acquisition) features a short sequence of actions, such as:

lever → press → pellet → eat → nutrients (22)

or, more generally:

s1 → b1 → s2 → b2 → outcome (23)

Different parts of this sequence enter the successive phases
as indicated in Table 2. The revaluation phase (phase two)
exposes the animals to a changed value of the outcome.
It is typical to induce illness following food consumption,
although other arrangements are possible.2 In phase three
(extinction), the response is tested again without yielding
the outcome. Simple S-R theories predict that the response
would be unchanged (compared to control animals that did
not undergo revaluation), because the changed value of s2
cannot affect the s1-b1 association if s2 is not experienced.
Thus, a change in responding would show that the animals
learned something different, or something more than a
S-R association (Miller, 1935; Rozeboom, 1958). Lastly,
phase four (reacquisition) tests whether the response can
be reacquired after having been extinguished in phase
three. Intriguingly, the results of revaluation experiments
are sometimes compatible with S-R theories and sometimes
not (Rescorla, 1980; Mackintosh, 1983; Holland, 2008;
Balleine, 2011). We use simulations with A-learning to
discuss these results.

2It is also common to devalue the food temporarily by sating the
animal. Currently, this treatment must be hand-coded in simulations,
but could be included in A-learning in several ways. For example,
Zhang et al. (2009) propose to encode motivational state in the β
parameter in Eq. 6, so that responses that are more (less) likely in a
given motivational state are given a higher (lower) β value.

No revaluation in extinction

Figure 10 shows results from a first simulation, in which
we find no difference during extinction between the
experimental and control groups. During re-acquisition,
however, the control group re-acquires lever pressing fully,
while responding in the experimental group continues to
decline. These results are as suggested by S-R theories, and
mirror closely those of Adams (1980). To understand them,
we consider how lever pressing is affected by the stimulus
value of the pellet, w(pellet). Figure 10b shows that the
revaluation treatment (a single pairing of the pellet with
illness) causesw(pellet) to drop sharply, in the experimental
group only. This drop does not influence lever pressing
directly, because it does not change v(lever → press).
As the pellet is also absent during the extinction phase,
the experimental and control groups respond identically
throughout this phase. When the pellet is reintroduced
during reacquisition, w(pellet) reinforces lever pressing in
the control group, but punishes it in the experimental group,
leading v(lever → press) to increase in the former and
further decrease in the latter (Fig. 10c and d).

Revaluation in extinction

Contrary to what found by Adams (1980), other revaluations
experiments found differences between experimental and
control animals already in the extinction phase (Holland,
2008), in both instrumental (Adams & Dickinson, 1981)
and Pavlovian procedures (Rescorla, 1973; Holland &
Rescorla, 1975a; Rescorla, 1980). This is a crucial result
of revaluation experiments because it is incompatible
with a simple S-R theory. These differences, however,
are typically smaller and more variable than those seen
during reacquisition (Dickinson et al., 2002; Holland,
2008). In A-learning, differences in extinction can arise
if the changed stimulus value of the outcome has the
opportunity to influence the S-R value for the response
that produces the outcome. This may happen in several
ways. A very direct way consists of adding experiences of
the form lever→press→pellet between the revaluation and
reacquisition phases, thus allowing the changed stimulus
value w(pellet) to influence responding (Fig. 10b, e). This
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is seldom done, however, because it hardly distinguishes
between alternative theories.

Another way to obtain extinction effects in A-learning
is to include stimulus elements that appear in both the
revaluation and extinction phases. If X is such a stimulus,
the revaluation and extinction phases become:

pellet +X → eat → illness (Revaluation phase)
lever → press → X (Extinction phase)

Under these circumstances, w(X) would become nega-
tive during revaluation, and thus capable of decreasing
v(lever → press) during extinction. Simulation results for
this scenario are in Fig. 10c, f. There is no difference
between the experimental and control groups on the first
extinction experience, because v(lever → press) is updated
only after X is experienced. A robust difference, however,
appears rapidly starting with the second extinction experi-
ence. Whether this account is viable depends on whether
stimuli common to revaluation and extinction can be cred-
ibly identified. We leave a comprehensive evaluation to
future research, but we offer two remarks.

First, common stimuli can readily be identified in
some studies. For example, Adams and Dickinson (1981)
conducted the revaluation experience in the same Skinner

box used for the other phases (although the lever required
for the instrumental response was temporarily removed),
as did Rashotte et al. (1977) when demonstrating the
revaluation of a second-order Pavlovian CS by the
extinction of the first-order CS. Common stimuli, however,
are harder to identify in other cases. For example, Chen
and Amsel (1980) found that a devaluation treatment in
the animal’s home cage led to slower running toward the
goal box of a runway, which had previously contained the
devalued outcome.

Second, even in the presence of common stimuli,
A-learning predicts that revaluation should not affect
responding in extinction on the very first experience. This
prediction is difficult to test using published data, in which
each data point commonly includes many responses. When
response rates have been measured with high temporal
resolution, however, the pattern in Fig. 11 has been
observed, such as in Balleine and Dickinson (2005) and
Dezfouli et al. (2014), both employing one-minute bins.

Conclusions about revaluation

Data and theory highlight many factors that can con-
tribute to revaluation, including the precise sequence of
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experiences provided to the animals, which stimulus ele-
ments appear in each experimental phase, and which rein-
forcers are used (Rescorla, 1980; Holland, 2008; Balleine,
2011). While it remains to be determined whether A-
learning can explain revaluation data satisfactorily, we hope
to have shown that the joint effect of S-R values and stim-
ulus values can produce a variety of outcomes, which are
broadly consistent with available data.

Evaluative Conditioning and Incentive Learning A-
learning’s account of revaluation can be considered a
mathematical formalization of the ideas pioneered by
Garcia (1989) and further developed by Balleine and Dick-
inson (1991). In this account, outcome revaluation would
be a two-step process. In the first step, termed evaluative
conditioning, the pairing of food and illness changes the
perceived value of the food, but does not change respond-
ing. The latter changes in the second step, termed incentive
learning, when the animal contacts the outcome again and
experiences its changed value. Only after this second step
the new value of the outcome can affect responding. These
ideas are remarkably close to how revaluation operations
in A-learning. Evaluative conditioning corresponds to a
change in the stimulus value of the food, w(pellet), while
incentive learning to a change in the S-R value of the action
that yields the food, v(lever → press), which in turn is
based on the changed stimulus value of the food.

Distance From the Reinforcer Using a Pavlovian procedure,
Holland and Straub (1979) found that behaviors that are
more proximal to the outcome, such as contacting and
picking up a food pellet, are more sensitive to devaluation
than more distal behaviors, such as general activity and
approach to the food cup. Similarly, Balleine and Dickinson
(2005) found that the second link of a two-link instrumental
chain is more easily affected by devaluation than the

first link. These findings are directly compatible with A-
learning. Consider, for example, the sequence:

s1 → b1 → s2 → b2 → s3 → b3 → outcome

If the outcome changes value, the experience s3 → b3 →
new outcome can immediately change v(s3 → b3), but a
minimum of two experiences would be necessary to change
v(s2 → b2), because the latter change is mediated by
w(s3) rather than directly by the value of the outcome.
Likewise, it would take a minimum of three experiences to
alter v(s1 → b1).

This reasoning may explain why Adams (1980) did
not observe revaluation in extinction while Adams and
Dickinson (1981) did, despite the two studies being
performed in the same laboratory and with nearly identical
procedures. The latter study, in fact, employed three
pellet→toxin pairings, allowing the negative value of the
toxin to influence more behaviors, whereas Adams (1980)
employed a single pairing. If, for example, the act of eating
is decomposed as follows:

pellet → seize → taste → swallow → toxin

then a single devaluation experience would change the value
of the taste of the pellet, but not of its sight or of other exter-
nal stimuli that may be shared between the revaluation and
extinction phases. This is in line with Garcia (1989) sug-
gestion that a single experience can revalue only the taste
of food, while at least a second experience is necessary
to affect consumption. The same considerations provide a
formal justification to observations, at first puzzling, that
adding or removing a movable panel in front of the food
magazine can influence the results of revaluation exper-
iments. As observed by Balleine and Dickinson (2005),
operating the panel introduces an additional response, and
thus increases the distance between previous responses
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and the outcome. According to A-learning, the back-
propagation of value along stimulus-response sequences is
a general principle that underlies many phenomena. It is not
specific to the case of taste aversion learning in which it was
recognized by Garcia (1989).

Pavlovian-to-instrumental transfer

In Pavlovian-to-instrumental transfer (PIT), a Pavlovian
CS associated with a reinforcer is found to facilitate an
instrumental response that procures the same reinforcer
(specific PIT) or similar ones (general PIT). Here we
consider the following simple PIT paradigm (“single-lever”
paradigm in Cartoni et al. (2016)). First, a Pavlovian
CS is established, for example by repeated CS→food
experiences. Then, an instrumental response such as
lever→press→food is established. Lastly, the response is
tested in extinction, in the presence and in the absence
of the CS. PIT occurs if the response rate is higher
during the CS. We consider two potential contributions to
PIT: that the CS can influence instrumental responding by
means of the stimulus value it acquires during Pavlovian
training, and that Pavlovian and instrumental learning
affect some of the same behaviors. We consider these
contributions separately for clarity, but they are not mutually
exclusive.

The first mechanism is simple if perhaps surprising.
Pavlovian training has two effects: it establishes CRs to the
CS and it endows the CS with stimulus value. The latter
can influence instrumental behavior during the PIT test as
follows. Suppose that the animal presses the lever during the
CS presentation, resulting in the following S → B → S′
sequence:

. . . → CS + lever → press → CS + lever → . . .

According to A-learning, the animal would perceive the
outcome S′ = CS+ lever, and use its reinforcement value of

w(CS) + w(lever) to update the S-R values v(CS → press)
and v(lever → press). On the other hand, if the animal
presses the lever in the absence of the CS the relevant S →
B → S′ sequence is

. . . → lever → press → lever → . . .

which rewards pressing the lever with the value w(lever),
which is smaller thanw(CS)+w(lever). During the PIT test,
which is conducted in extinction, both w(CS) and w(lever)
are predicted to decrease, but a high enough w(CS) can
result in slower extinction of lever pressing in the presence
of the CS than in its absence. This effect is demonstrated
in Fig. 12, which also shows the underlying dynamics of S-
R values and stimulus values. Notably, v(CS → press) is
zero at the beginning of the test because lever pressing has
never been rewarded to the CS, but it transiently increases
because lever pressing in the presence of the CS is rewarded
by the stimulus value of the CS itself. Thus, a PIT effect
can emerge during the test phase because of the temporary
increase of v(CS → press). This leads to the prediction
that no PIT should be apparent at the very beginning of the
test, but we have not found studies in which PIT is reported
with sufficient granularity to test this hypothesis. A second
prediction is that no PIT would ensue from this mechanism
if pressing the lever terminates the CS.

A second potential contribution to PIT is that the CS
can interfere with or facilitate instrumental learning. For
example, the CS may evoke increased exploration of the
environment (Holland & Rescorla, 1975b), which may lead
the animal in proximity of the lever. At the same time,
the CS may elicit approach to the food magazine, which
would interfere with instrumental responding by drawing
the animal away from the lever (Holmes et al., 2010;
Cartoni et al., 2016). A PIT effect would arise if Pavlovian
facilitation is, overall, stronger than interference. We study
the interplay between different behaviors in PIT as follows.
We assume that the food magazine is located through a
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Similar results are obtained for many parameter values, provided the
CS has high enough value and long enough duration to effectively rein-
force lever pressing in the CS presence. Simulation script and model
parameters are available online
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Table 3 Design for the simulations of Pavlovian-to-instrumental
transfer reported in Fig. 13. Pavlovian training establishes a search
response to the compound stimulus of the conditioning box plus a
CS. Instrumental training establishes a behavioral chain that includes
the search response and lever pressing. The transfer test compares
performance of the instrumental chain in the presence vs. absence of
the CS. See text for further details. The notation ¬b indicates behavior
other than b

Phase Experiences

Pavlovian box,CS → search → food

training box,CS → ¬search → no food

box → ¬search → no food

Instrumental box → search → lever → press → food

training box → ¬search → no food

box → search → lever → ¬press → no food

Transfer test box → search → lever → press → no food

box,CS → search → lever,CS → press → no food

“search” response that, following Pavlovian conditioning,
is potentiated during the CS. We also assume that the
same search behavior is performed during instrumental
learning to locate the lever. Thus the instrumental response
is actually the chain box→search→lever→press→pellet,
where “box” represents the Skinner box in which both
Pavlovian and instrumental training are conducted. When
the lever is present, searching results in locating either the
magazine or the lever, with equal probability. Finally, during
the transfer test, periods with and without the CS alternate,
but lever presses are not reinforced. The simulation setup
is summarized in Table 3. The results presented in Fig. 13a
demonstrate a PIT effect, in that more lever presses occur
when the CS is present than when it is absent. Furthermore,
Fig. 13b and c show that lever pressing is, in fact, depressed
during the CS, but that this effect is more than compensated
by the increased exploration of the environment, which
leads to the lever being encountered more often.

PIT tests are often more detailed than our simple simu-
lation, comprising multiple CSs, responses, and outcomes.
In such tests, training with one CS-outcome pair facilitates
instrumental behavior for other pairs, too (general PIT), but
it facilitates the instrumental response that yields the same
outcome the most (specific PIT; Cartoni et al. (2016)). We
have not modeled such outcome specificity above, but it is
conceivable that specific CSs can get associated with either
internal states or external stimuli that favor certain responses
over others. We do not claim to resolve all issues around
PIT with these exploratory arguments, but rather to point out
that an analysis that considers conditioned reinforcement
and behavioral chain analysis could help understand PIT.
Our computational framework can be used to model dif-
ferent scenarios in great detail, and can suggests new tests.
For example, one could place the CS that signals outcome 1
(e.g., a light) near the lever for outcome 2, and vice-versa.
According to our analysis, this arrangement should reduce
the PIT effect.

Comparison with other TDmodels

As mentioned in the Introduction, TD algorithms are
partly inspired by learning psychology and are having a
growing impact in the behavioral neuroscience of learning
(Dayan & Niv, 2008; Balleine et al., 2009). The latter has
primarily considered three algorithms: Q-learning, SARSA,
and the actor-critic model (Table 4). A-learning, on the
other hand, adopts the lesser-known QV-learning (Wiering,
2005). Is any of these algorithms a better starting point
to understand animal learning? Neural data suggest that
animals may use several algorithms concurrently (Balleine
et al., 2009; Dezfouli & Balleine, 2013), but behavioral
data are also relevant because different TD algorithms
can make strikingly different predictions when conditions
change, such as when contingencies are altered or when
stimuli are added or removed. For example, Fig. 14 shows
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the lever is found. c Probability of a search response, which can lead
to finding the lever or the food magazine with equal probability. See
Table 3 and the text for details. Simulation script and model parameters
are available online
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Table 4 A comparison of temporal-difference (TD) learning algorithms with reference to the QV-learning model adopted by A-learning (first
row). A * indicates the same equation as in A-learning. Q-learning, SARSA, and Expected SARSA do not learn stimulus values; they compute
them based on S-R values. Q-learning uses as stimulus value for s the maximum S-R value known for any behavior possible in s. SARSA uses
simply the S-R value for the behavior that is actually performed. Expected SARSA uses the value expected from behaving according to its current
knowledge. The actor-critic model learns stimulus values as A-learning, and uses the same error term to drive learning of both stimulus values
and v variables (in this algorithm, v variables do not represent values). The A-learning equations are known as QV-learning in machine learning
(Wiering, 2005). The other algorithms are described in Sutton and Barto (2018). Note: Machine learning uses Q for S-R values and V for stimulus
values; here we use v and w, respectively, for closer adherence to psychological tradition

Model S-R values Stimulus values

QV-learning �v(s → b) = αv

[
u(s′) + w(s′) − v(s → b)

]
�w(s) = αw

[
u(s′) + w(s′) − w(s)

]

Q-learning * w(s′) = maxb′ v(s → b′)
SARSA * w(s) = v(s′ → b′)
Expected SARSA * w(s′) = ∑

b′ Pr(s′ → b′)v(s′ → b′)
Actor-critic �v(s → b) = αv

αw
β [1 − Pr(s → b)]�w(s) *

predictions from actor-critic, Expected SARSA, and Q-
learning, about the partial reinforcement-extinction effect
(PREE, results from A-learning are in Fig. 1b). Expected
SARSA is equivalent to computing stimulus values as the
average of current S-R values (Table 4, line 4). This model
(and SARSA, not shown) does not reproduce the PREE
because S-R values do not maintain a memory of whether
they were attained by partial or continuous reinforcement.
In A-learning, this memory is maintained by stimulus values
(see The Sequential Nature of Learning). Interestingly, the
actor-critic model ((4), line 5) does not reproduce the PREE
despite learning stimulus values in the same way as A-
learning. In this case, the reason is that its v variables are
driven by changes in stimulus values, which are not, in
general, smaller following partial rather than continuous
reinforcement. In A-learning, S-R value changes depend
on the magnitude of stimulus values, rather than of their
changes. Lastly, the behavior of Q-learning depends on
model parameters. The model in Table 4, line 2, predicts
that a partially reinforced response should never extinguish,
because it continues to be reinforced by the previously
established maximum v value. This prediction can be

corrected by multiplying the maxb′ v(s′ → b′) term (see
Table 4) by a factor γ < 1 (“discounting,” see Sutton &
Barto 2018), as shown in Fig. 14c.

A comprehensive evaluation of TD model is outside
the present scope, but myriad tests are possible using data
from experimental psychology. We can also devise new
tests based on the algorithmic characteristics of each model.
For example, A-learning and the actor-critic model can be
differentiated based on the fact that, in the latter, v variables
stop changing once stimulus values are accurately predicted
( �w(s′) = 0 in Table 4). In A-learning, however, this
condition does not guarantee that S-R values do not change.
Suppose, for example, that an animal learns to press a lever
for food. After this behavior is acquired, a second lever is
added that yields the same food. A-learning predicts that
the animal would switch to use both levers equally, while
the actor-critic model predicts that the animal would learn
little about the second lever because it does not change
the value of the situation (Fig. 15). We may call this
phenomenon “response blocking” in analogy to blocking
between stimuli that predict the same outcome (Kamin,
1969; Pearce, 2008). A-learning’s prediction appears more
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two reinforced responses equally, while actor-critic continues to use
the first response almost exclusively. The duration of the first phase
has been set separately for the two algorithms to yield similar response
levels for the three behaviors. Simulation script and model parameters
are available online

realistic than the actor-critic’s prediction, as an equalization
of response rates is predicted based on the matching law
(Herrnstein, 1974; Baum, 1974).

Discussion

A-learning retains key features of current psychological the-
ory, such as error-correcting learning rules (Eqs. 4 and 5)
and sum rules (Eqs. 10 and 11) from the Rescorla and Wag-
ner (1972) model. To these, it adds two elements: condi-
tioned reinforcement, implemented as stimulus values, and
a decision rule based on S-R values. The resulting model
remains conceptually simple, yet exhibits complex learning
dynamics that often require detailed analysis. Above, we
have seen that A-learning appears consistent with data on
many phenomena, including the acquisition of instrumen-
tal, Pavlovian, and avoidance responses, omission training,
autoshaping, matching, behavioral contrast, the acquisition
and extinction of behavioral chains and higher-order Pavlo-
vian CRs, the partial reinforcement extinction effect, the
effect of free reinforcement on instrumental responding,
Pavlovian-to-instrumental transfer, and outcome revalua-
tion. In Enquist et al. (2016), we replicated “misbehavior”
(Breland & Breland, 1961), and violation of expectation
(Roper, 1984; Haskell et al., 2000), in addition to results
from studies of planning in Lind (2018b) and of social learn-
ing in Lind et al. (2019). All of these results stem from
Eqs. 4, 5, and 6. A-learning takes some unconventional

stances (see Comparison with Current Theory), and some
of the accounts it offers need to be validated empirically
(see Pavlovian Acquisition and Outcome Revaluation). Fur-
thermore, A-learning is still incomplete. We highlight some
missing elements in the concluding part of this Discus-
sion. Before that, we consider some remaining conceptual
points.

A-learningmodels both Pavlovian and instrumental
learning

Whether the procedural distinction between Pavlovian (S-S)
and instrumental (R-S) contingencies reflects a separation
of underlying learning processes has been hotly debated,
to the point of trying to explain instrumental learning in
Pavlovian terms, and Pavlovian learning in instrumental
terms (Mackintosh & Dickinson, 1979; Mackintosh, 1983).
These attempts were ultimately rejected because many
instances of learning conform better to one of the
two conceptions. That is, some learning appears rigidly
determined by S-S contingencies, in which case we deem
it Pavlovian, while other learning is mainly sensitive to
R-S contingencies and is flexible in form, in which case
we deem it instrumental. This resolution is appealing and
has spurred productive theorizing over many decades, yet
it leaves some open issues. As recalled in the Introduction,
a typical learning experiment includes both Pavlovian
and instrumental contingencies, and most responses are
sensitive to both (Mackintosh, 1983). It is thus desirable
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to develop mathematical models that are sensitive to both
Pavlovian and instrumental contingencies.

In A-learning, both instrumental and Pavlovian learning
depend on stimulus value learning (w values) and S-R value
learning (v values). With generic parameter settings (the
same αv , αw, and β values for all combinations of stimuli
and responses), A-learning behaves purely “instrumentally.”
That is, it learns by trial and error to maximize reinforce-
ment. “Pavlovian” learning is achieved through parameter
settings that enable only certain modifications of behavior
(see Eqs. 14 and 15, and surrounding text). As discussed
in Pavlovian Acquisition, these settings model the biolog-
ical organization of behavior systems (Timberlake, 1983,
1994; Domjan, 1993, 2008; Hogan, 2017). The effects of
biological predispositions on instrumental learning (Hinde
& Stevenson-Hinde, 1973; Shettleworth, 1975, 1978; Poper,
1983) are implemented in the same way. To our knowledge,
A-learning is the only mathematical model that can exhibit
not only purely Pavlovian and purely instrumental learning,
which appears rare (Mackintosh, 1983), but also the more
realistic intermediate cases.

A-learning reinterprets Pavlovian learning

We discussed above several differences between current
accounts of Pavlovian conditioning in terms of S-S asso-
ciations, and A-learning’s account in terms of S-R values
and stimulus values. These differences lead to specific pre-
dictions about the course of conditioning (see Pavlovian
Acquisition) and how outcome revaluation treatments affect
learned behavior (see Outcome Revaluation). Studies of
outcome revaluation have also led to the conclusion that
first-order conditioning results primarily in CS-US asso-
ciations, and higher-order conditioning in CS-CR associa-
tions, because first-order CRs are more easily affected by
revaluation than higher-order CRs (see Distance From the
Reinforcer). A difficulty with this conclusion is that many
responses that are customarily considered first-order CRs
might as well be considered higher-order ones. For exam-
ple, characteristics of food such as flavor and appearance
are often learned (Pavlov, 1927; Ewer, 1968), hence food
revaluation treatments may be argued to affect second-order
CRs. A-learning side-steps this difficulty because it posits
that all responses have the same associative structure (S-R
values plus stimulus values), yet it allows first-order CRs
to be more sensitive to revaluation because they are more
proximal to the outcome whose value is manipulated (see
Distance From the Reinforcer).

A-learning includes habits and goals

That instrumental behavior is not always sensitive to
outcome revaluation has been interpreted in terms of

complementary “habitual” and “goal-directed” learning
systems (Dickinson & Weiskrantz, 1985; Balleine et al.,
2009). The habitual system is similar to our S-R values
in that it responds to stimuli without taking into account
outcome value. The goal-directed system is defined
by being sensitive to outcome (goal) value, and has
been further subdivided into two processes (Balleine &
Dickinson, 1998): one that estimates the contingency
between responses and outcomes, and one that learns about
the value of the outcome (see Evaluative Conditioning and
Incentive Learning). A-learning contains the same elements,
albeit somewhat rearranged. S-R values are insensitive
to outcome revaluation (habitual), but are sensitive to
instrumental contingencies (see Instrumental Acquisition).
In addition, stimulus values track outcome value and can
influence S-R values, resulting in a variety of revaluation
effects. This influence is not immediate as in some other
models of goal-directed action (Balleine et al., 2009;
Dezfouli & Balleine, 2013), but it may suffice to account
for many revaluation findings (see Outcome Revaluation).

The distinction between habitual and goal-directed
behavior has a further root in the finding that sensitivity to
outcome devaluation can decrease with prolonged training
(Adams (1982) and Dickinson and Weiskrantz (1985),
but see Garr and Delamater (2019)), suggesting a shift
of control from the goal-directed to the habitual system
(Dickinson & Weiskrantz, 1985; Dezfouli & Balleine,
2013). In A-learning, this finding can occur because
response probability depends non-linearly on S-R values.
A moderate S-R value may be sufficient to achieve high
response probability, after which prolonged training may
continue to increase S-R value with a negligible increase
in responding. When S-R values are very high, however,
outcome revaluation may have a smaller impact, because
reducing responding requires a large decrease in S-R values.

In summary, A-learning is not goal-directed in the sense
of explicitly planning a course of action to reach a desired
outcome, but it is in the sense that stimulus values can
orient behavior toward high-value outcomes. At the same
time, A-learning can behave habitually if stimulus values
cannot readily influence S-R values. More work is necessary
to determine whether this can be a satisfactory account
of observed shifts between habitual and goal-directed
behavior.

Outlook

Several important domains are currently outside of the scope
of A-learning, such as motivational processes (Dickinson &
Balleine, 1994; Balleine, 2011), perceptual learning effects
like sensory preconditioning (Brogden, 1939; Rizley &
Rescorla, 1972; Hall, 1991), the role of working memory in
associative learning (Capaldi, 1994), attentional processes
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that may change both learning rates and stimulus salience
(Mackintosh, 1975; Pearce & Hall, 1980; Le Pelley, 2004;
George & Pearce, 2012), and how A-learning may map onto
neural structures. Some of these issues are not specific to
A-learning, and can be approached with standard methods.
For example, in Enquist et al. (2016), we presented a
connectionist implementation of A-learning showing that S-
R and stimulus values may be encoded as synaptic strengths.
Based on related models, this implementation is expected
to reproduce stimulus generalization accurately (Van Roy,
2002; Enquist & Ghirlanda, 2005), and to be helpful in
the study of perceptual learning effects, such as sensory
preconditioning (Hebb, 1966; Enquist & Ghirlanda, 2005).
Other phenomena, however, require novel research whose
outcome is difficult to anticipate, such as how A-learning
may interface with motivational and attentional processes.
It remains to be seen whether A-learning can be extended
satisfactorily to these domains.

Open practices statement

Simulation scripts are available at https://osf.io/b8mez.
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