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Successful statistical reasoning emerges from a dynamic system including: a cognitive agent, material
artifacts with their actions possibilities, and the thoughts and actions that are realized while reasoning
takes place. Five experiments provide evidence that enabling the physical manipulation of the problem
information (through the use of playing cards) substantially improves statistical reasoning, without
training or instruction, not only with natural frequency statements (Experiment 1) but also with
single-event probability statements (Experiment 2). Improved statistical reasoning was not simply a
matter of making all sets and subsets explicit in the pack of cards (Experiment 3), it was not merely due
to the discrete and countable layout resulting from the cards manipulation, and it was not mediated by
participants’ level of engagement with the task (Experiment 5). The positive effect of an increased
manipulability of the problem information on participants’ reasoning performance was generalizable both
over problems whose numeric properties did not map perfectly onto the cards and over different types
of cards (Experiment 4). A systematic analysis of participants’ behaviors revealed that manipulating
cards improved performance when reasoners spent more time actively changing the presentation layout
“in the world” as opposed to when they spent more time passively pointing at cards, seemingly
attempting to solve the problem “in their head.” Although they often go unnoticed, the action possibilities
of the material artifacts available and the actions that are realized on those artifacts are constitutive of
successful statistical reasoning, even in adults who have ostensibly reached cognitive maturity.

Keywords: statistical reasoning, Bayesian inferences, systemic cognition, distributed cognition,
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In contexts where people do not know for sure what the case is
or what the future will bring, they still must act, make decisions,
and choose between alternatives based on uncertain information
and subjective opinions. In court settings, individual jurors must
infer the likelihood that the defendant is guilty or innocent based
on the accumulation of uncertain pro and con evidence. In medical

settings, doctors and nurses must infer the likelihood that their
patient has a disease following the observation of the result from
a diagnostic test that is susceptible to show a false positive. Ideally,
we should be able to reason appropriately with uncertain informa-
tion. In reality, research has shown that reasoning under uncer-
tainty is often flawed (e.g., Villejoubert & Mandel, 2002) and
intervention efforts designed to improve statistical reasoning have
met with mitigated success (Kurzenhäuser & Hoffrage, 2002;
McCloy, Beaman, Morgan, & Speed, 2007; Villejoubert, 2007).

Over the years, the accumulated evidence suggested that peo-
ple’s use of heuristics was responsible for their poor performance
in statistical reasoning tasks (Gilovich, Griffin, & Kahneman,
2002). Heuristic thinking has been attributed to people’s general
lack of numeracy skills (Chapman & Liu, 2009; Sirota &
Juanchich, 2011), lower cognitive abilities, or lack of motivation to
engage in effortful thinking (Brase, Fiddick, & Harries, 2006;
Stanovich & West, 1998). By contrast, in the research presented
here, we surmised that individuals’ struggle to engage in this type
of reasoning, together with researchers’ mitigated success in help-
ing participants overcome their difficulties, originates from the
type of material commonly used to study statistical reasoning;
namely, paper-and-pencil questionnaires. Specifically, we hypoth-
esized that such materials severely constrain what participants can
do to discover the correct solution. To test this proposition, we
report a series of five experiments showing that performance can
be substantially improved when materials afford richer interactions
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with the statistical information presented in the problems, inde-
pendently of the information format used and without training. We
conclude by discussing how this proposition can help better un-
derstand how people’s actual thinking capabilities may be realized
within and outside the laboratory.

Bayesian Reasoning

Probabilistic reasoning is implicated when one needs to infer the
probability that a hypothesis is true upon receiving new evidence.
For example, imagine a head teacher believes or knows a priori
that there is a 60% probability that a pupil watches too much TV.
She then receives a new piece of information about a particular
pupil, namely that this pupil needs reading glasses. She may now
revise the probability that this particular pupil is watching too
much TV. To do so, she needs to consider the chances that a pupil
wears glasses if he or she watches too much TV as well as the
chances that a pupil wears glasses if he or she watches little TV.

Formally, where H denote the target hypothesis (e.g., H: “the
pupil is watching too much TV”), D is the data or evidence
received (e.g., D: “the pupil wears glasses”), and Pr(H | D) is the
probability that H is true, given that D has been observed, Bayes’s
theorem dictates that Pr(H | D) should be obtained using the fol-
lowing formula:

Pr(H | D) �
Pr(H) · Pr(D | H)

Pr(H) · Pr(D | H) � Pr(not-H) · Pr(D |not-H)

�
Pr(D & H)

Pr(D)
(1)

where Pr(H) and Pr(not-H) represent the prior probabilities that H
is true, and that the mutually exclusive, alternative hypothesis,
not-H, is true, respectively; and where Pr(D | H) represents the hit
rate or conditional probability of observing D if H were true, and
Pr(D | not-H), the false alarm rate or conditional probability of
observing D if not-H were true.

To date, research exploring the nature of the inference processes
involved in Bayesian reasoning research typically uses “textbook
problems” (Bar-Hillel, 1983). The following problem provides a
typical example (adapted from Zhu & Gigerenzer, 2006):

The head teacher at Teddington School wonders if watching too much
TV increases the chances of wearing glasses. He obtained the follow-
ing information: The probability that a pupil is watching too much TV
is 60%. If a pupil is watching too much TV, the probability that he
wears glasses is 50%. If a pupil is not watching too much TV, the
probability that he wears glasses is 25%. Imagine that a new pupil is
wearing glasses. What is the probability that he watches too much
TV? ___%

Formally, the problem states that Pr(H) � 60%, Pr(D | H) �
50% and Pr(D | not-H) � 25% and calls for the value of Pr(H | D).
Applying Bayes’s theorem, we find:

Pr(H | D) �
.60 � .50

.60 � .50 � .40 � .25
�

.30

.30 � .10
�

.30

.40
� .75%

(2)

In other words, if a pupil is wearing glasses, there is a 75%
probability that he is spending most of his free time in front of the

TV. A substantial research literature has shown that very few
individuals can solve such problems when the probabilistic infor-
mation is presented with single-event probability statements (e.g.,
“The probability that X is x%”): Success rates typically range
between 10% to 15% (see Barbey & Sloman, 2007; Koehler, 1996
for reviews).

Human competence for revising prior probabilities in the light
of new evidence has long been debated (e.g., Phillips & Edwards,
1966). Kahneman and Tversky’s heuristic and biases program of
research was the first to propose descriptive verbal accounts of the
heuristic principles people may use to assess uncertainty in general
(e.g., the availability heuristic) and posterior probability judgments
in particular (e.g., the representativeness heuristic; see Tversky &
Kahneman, 1974). Moving on from these descriptive accounts,
researchers have sought to identify means to improve performance.
Most notably, research has established it is possible to increase
performance considerably by presenting probabilistic information
using “natural frequencies” that provide a summary of frequencies
of events, as individuals would have sampled them in their natural
environment (Gigerenzer & Hoffrage, 1995). The following ver-
sion of the glasses problem illustrates this alternative way of
presenting the problem data:

The head teacher at Teddington School wonders if watching too much
TV increases the chances of wearing glasses. He obtained the follow-
ing information: 12 out of every 20 pupils watch too much TV.
Among these 12 pupils who watch too much TV, six wear glasses.
Among the eight remaining pupils who do not watch too much TV,
two also wear glasses. Imagine you meet a group of pupils who wear
glasses. How many of them watch too much TV? ___ out of ___.

Here, the solution is given first by estimating the total number
of pupils wearing glasses: There are eight in total (six who wear
glasses and watch too much TV, and two who wear glasses but do
not watch too much TV). In other words, six out of these eight
pupils watch too much TV. Typically, 40% of participants can
solve this type of problems (Barbey & Sloman, 2007).

More recently, studies have also examined the role of individual
differences. A robust finding is that high numerate participants—
those who have higher abilities for reasoning with basic concepts
related to risk and probability (see Reyna, Nelson, Han, & Dieck-
mann, 2009, for a review)—seem to benefit most from the facil-
itating effect of natural frequency statements with Bayesian rea-
soning tasks (Chapman & Liu, 2009; Hill & Brase, 2012; Sirota &
Juanchich, 2011). Numeracy levels, however, do not predict the
rate of performance with single-event probability statements; per-
formance remains close to zero for both high and low numerate
people, indicative of a floor effect (Chapman & Liu, 2009). So,
even if natural frequency statements typically lead to a three to
fourfold increase in Bayesian performance (from% 10–15% with
single-event probability statements to 40%–45% with natural fre-
quency statements), there nevertheless remains a majority (typi-
cally around 60%) of individuals who do not draw accurate Bayes-
ian inferences.

Various hypotheses have been advanced to account for the
facilitating effect of natural frequencies. One view is that the
human mind is endowed with cognitive algorithms that are de-
signed to handle frequency information acquired through natural
sampling or simply finds it easier to compute frequencies than
probabilities (Gigerenzer & Hoffrage, 1995; Kleiter, 1994). An-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

582 VALLÉE-TOURANGEAU, ABADIE, AND VALLÉE-TOURANGEAU



other view is that natural frequencies facilitate performance be-
cause, unlike single-event probability statements, natural fre-
quency statements cue a clearer mental representation of the set
structure underlying those problems (Barbey & Sloman, 2007;
Gigerenzer & Hoffrage, 2007; Girotto & Gonzalez, 2001; Hof-
frage, Gigerenzer, Krauss, & Martignon, 2002; Macchi, 2000;
Sirota, Kostovičová, & Vallée-Tourangeau, 2015). This latter ex-
planation suggests that providing people with a clear presentation
of the problem set structure should be sufficient to facilitate the
elicitation of correct Bayesian inferences.

External Representations as Cognitive Support?

The ambiguities of a strictly linguistic description of a textbook
Bayesian problem must be resolved through interpretation. There
is growing evidence implicating the important role of supplemen-
tary external representations in addition to the task linguistic
description to foster normative inferences in Bayesian reasoning in
particular (Brase, 2009; Cosmides & Tooby, 1996; Sedlmeier &
Gigerenzer, 2001; Sirota, Kostovičová, & Juanchich, 2014; Slo-
man, Over, Slovak, & Stibel, 2003; Yamagishi, 2003) and more
generally in the study of inductive reasoning (Vallée-Tourangeau
& Payton, 2008; Vallée-Tourangeau, Payton, & Murphy, 2008).
Reasoners may represent intermediate aspects of that interpretation
in their immediate environment by scribbling down notes, drawing
overlapping sets or even some kind of decision tree structure, but
such self-generated external representations may or may not in-
clude the relevant information to facilitate the required inferences.
By contrast, experimenter-generated graphical aids in the form of
a nonlinguistic external representation of nested sets can offer the
explicit segmentation of relevant categories decomposed in terms
of countable objects that can be visually inspected (Brase, 2009;
Sirota et al., 2014).

Yet, evidence for the facilitating effect of graphical aids on
Bayesian performance is mixed. Using natural frequencies, Cos-
mides and Tooby (1996) reported that 76% of participants could
solve Bayesian problems when the data were also depicted within
a grid of 100 squares, with some prefilled squares. This success
rate rose to 92% when participants were first asked to fill in the
squares themselves to represent the problem data. These results,
however, did not hold when participants were provided with a
diagram of Euler circles that depicted relationships between the
problem’s sets and subsets (Sloman et al., 2003, Experiment 2).
The efficacy of graphical aids for improving Bayesian reasoning
also appears uncertain with tasks that require combining informa-
tion that is not segmented in individual cases as with percentage
frequency statements such as “x% of pupils watch too much TV”
or single-event probability statements such as “the probability that
a pupil watches too much TV is x%”.1 Intensive Bayesian reason-
ing training programs lasting between 1 hr 45 min and 3 hrs and
using graphical frequency trees as supporting tools can achieve
100% median success rate on tasks using natural frequencies, even
5 weeks after training (Sedlmeier & Gigerenzer, 2001). However,
success rate is lower with less intensive tutorial session (e.g., 50%
success rate; see Kurzenhäuser & Hoffrage, 2002) and the benefit
of training in one type of problem does not transfer to other types
of probability tasks such as cumulative probability tasks (McCloy
et al., 2007). Moreover, not all graphical aids can support reason-
ers: The effectiveness of training with probability trees does not

hold up with time (Sedlmeier & Gigerenzer, 2001) while the
provision of bar charts may even impede performance when par-
ticipants are asked to fill the chart themselves (Villejoubert, 2007).

So while graphical aids can be important tools for teaching
Bayesian reasoning, the presence of such an aid does not always
facilitate performance—or when it does, improvements come at
great costs. Yet, so far, we have little understanding of why such
diverging effects may occur. Instead, the current view is that most
people are simply unlikely to draw Bayesian inferences unless they
are endowed with higher cognitive abilities or benefited from
top-tier university education (Brase et al., 2006; Stanovich &
West, 1998). There is a possible alternative explanation, however.
Drawing on the epistemological shift of perspective advocated by
proponents of the “distributed cognition” approach (e.g., Hutchins,
2001), we hypothesized that the difficulties most people experi-
ence in drawing reasoned Bayesian inferences may not lie in their
cognitive limitations or lack of education but, instead, in the tasks
and graphical aids researchers have used to evaluate Bayesian
reasoning.

Beyond Externalization: Distributed Cognition and
Bayesian Reasoning

Traditional accounts of human reasoning have situated knowl-
edge and understanding—namely, cognition—within individuals’
mind or “inside the skull” as it were. By contrast, an alternative
approach to the study of cognition, the so-called “distributed
cognition approach” calls for a shift from the mind as the main unit
of analysis toward a systemic analysis that encompasses both the
mind, the body, and its surrounding environment (Fioratou &
Cowley, 2009; Hutchins, 1995, 2001, 2010; Kirsh, 2009, 2013;
Vallée-Tourangeau, in press, 2013; Vallée-Tourangeau, Euden, &
Hearn, 2011; Vallée-Tourangeau & Villejoubert, 2013; Vallée-
Tourangeau & Wrightman, 2010; Vallée-Tourangeau & Vallée-
Tourangeau, 2014; Villejoubert & Vallée-Tourangeau, 2011;
Weller, Villejoubert, & Vallée-Tourangeau, 2011; Wilson &
Clark, 2009). This entails a reconceptualization of cognition as
achieved through the close coupling of internal or mental repre-

1 We distinguish the way a probability value is expressed (i.e., as a
percentage: 60%, a decimal: .60, or as a frequency ratio: 3 in 5) from the
referent of a probability statement. A statement can refer to a unique
outcome or to an outcome that is part of a set of identical outcomes. Thus,
the statements: “the probability that a pupil watches too much TV is 60%”
or “the chances that a pupil is watching too much TV are 3 in 5” are both
single-event probability statements. In predicate logic, this would be rep-
resented as “?x | P(x) � Pr[W(x)] � 60%” where P(x) is the property “x is
a pupil” and W(x) is the property “x watches too much TV” or, in plain
English, “There exists one element x such that x has the property “is a
pupil” and x has a 60% probability to also have the property “watches too
much TV.” The same principle applies to a frequentist probability state-
ment: using a frequency ratio to express the probability value is not what
defines a probability statement as frequentist. Thus, the statement: “The
probability that pupils watch too much TV is 60%” is a frequentist
statement because its referent is a set of elements. It would be represented
as P � {x | P(x)}, W � {x | W(x)}, @x, x � P ¡ Pr(x � W) � 60% or in
plain English, “For all elements x, if x belongs to the set of elements with
the property “is a pupil,” the probability that x also belong to the set of
elements with the property “watches too much TV” is 60%”. Natural
frequency statements are particular exemplars of frequentist statements that
restrict the format of the probability value to raw (i.e., non-normalized)
frequency ratios, as they would be experienced through natural sampling.
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sentations and possible operations together with external or mate-
rial presentations and possible physical actions people can carry
out. Operating within such an extended cognitive system enables
people to exceed the capacities of their mental resources because
the coupling of physical activity with mental processing augments
both the quality and efficiency of thinking. For example, individ-
uals who engage in a difficult mental arithmetic task will be more
efficient if they are given the opportunity to manipulate number
tokens to support their mental computations as opposed to be
constrained to keep their hands still and rely only on their mental
powers to compute the sums (Vallée-Tourangeau, 2013). This
suggests that levels of performance observed in environments that
offer reduced opportunities for coupling thinking with physical
actions may be unrepresentative of individuals’ true abilities. In
other words, the systemic perspective calls for a careful examina-
tion, not only of reasoners’ mental resources and processing abil-
ities, but also of their immediate material environment and the
opportunities (or lack thereof) it offers to support and transform
their cognitive efforts.

In classical textbook-problem tasks presenting single-event
probabilities statements, as in the vast majority of tasks used to
study adult cognition, the immediate environment is often severely
constrained: The material presentation of the task consists of a
short text printed on a piece of paper and possibly a blank space
where online written protocols are recorded. The tools that can be
used to interact with this material presentation are limited to a pen,
or perhaps a pencil and an eraser. The material apparatus formed
by the printed text, the blank space, and the pen affords the
drawing of symbols and self—generated diagrams. These draw-
ings may trigger the use of some learned arithmetic operators and
procedures. Being able to see those computations on the blank
paper may occasionally increase the effectiveness and accuracy of
the computations carried out. However, the overall balance of
efforts required to solve these tasks remains heavily skewed to-
ward the mental side, offering limited opportunities to manipulate
information in the material world: the problem information cannot
be handled, controlled, altered, transformed, or moved through
physical action. Descriptive richness or graphical complexity still
affords but a restricted range of hands-on manipulations that can
meaningfully transform the material presentation of the problem
information. Participants must rely on their mental representation
of the structure of the task while regulating their thinking process
in order to arrive at an answer. This in turn is likely to result in a
hefty working memory load, which constrains the cognitive oper-
ations that can be applied to the task. Clarification of the nested-set
structure of the task (e.g., presenting the problem data in the form
of natural frequencies or presenting visual aids) may therefore help
because it reduces the mental efforts required to operate on internal
representations, thereby allowing those with sufficient cognitive
resources to solve the task. For most people, however, such inter-
ventions seem insufficient to alleviate the cognitive load imposed
by these tasks.

Thus, the performance ceiling observed in Bayesian tasks may
have more to do with the impoverished external resources avail-
able to support thinking than to participants’ cognitive deficiencies
or conceptual limitations. Crucially, this analysis suggests that
participants should be able to overcome this performance ceiling if
their immediate environment enabled the judicious coordination of
mental activity with modifiable material resources, resulting in the

development of a more productive problem representation from
which they could draw Bayesian inferences. We do not argue that
performance is unrelated to individual characteristics in a distrib-
uted environment. Rather, we contend that the importance of
individual differences (i.e., the cognitive processing individuals
are capable of implementing, given their cognitive skills and
knowledge) will depend on the level of mental efforts required by
the task provided as well as the extent to which this task affords
the distribution and coordination of efforts between individuals’
mind and their immediate environment (i.e., the action possibilities
or “affordances” of task materials at the disposal of reasoners
when they attempt to solve the task). We now report five experi-
ments designed to explore this proposal.

Experiment 1

In this experiment we aimed to engineer an interactive thinking
context in which the information relevant for a Bayesian inference
could be observed, counted, manipulated, ordered, and reordered
to form different categories. We purposely did not instruct partic-
ipants on how to combine information or how to apply Bayes’s
theorem. Instead, we provided them with a pack of custom-made
playing cards depicting the individual elements of the sets de-
scribed in the problem (Figure 1 illustrates the cards accompany-
ing the glasses problem presented earlier). We surmised that the
physical activity that these cards afforded and the associated
dynamic perceptual feedback would recruit a broader range of
perceptual and cognitive processes in solving the problem com-
pared with those implicated in the interpretation of standard lin-
guistic and diagrammatic problem descriptions. Thus, by allowing
participants to recruit and coordinate internal and external re-
sources, we anticipated that they would develop a richer and more
complex mental representation of the data that might convey more
transparently key steps in deriving the correct Bayesian answer. In
line with previous research findings (Chapman & Liu, 2009; Hill
& Brase, 2012; Sirota & Juanchich, 2011), we also anticipated that
individuals with higher numeracy skills would outperform those
with lower numeracy skills.

Method

Participants. A total of 90 individuals (64 women and 26
men; mean age � 22 years, SD � 5.66) volunteered to take part in
the experiment. The data were collected individually at a public
library. The vast majority (94.4%) were social science and human-
ities undergraduate students. The experiment was conducted in
French.

Design and procedure. Participants were randomly allocated
to one of two conditions: a high-interactivity condition (paper-and-
pencil with cards) or a low-interactivity condition (paper-and-
pencil only). We used three scenarios adapted from Zhu and
Gigerenzer (2006): the glasses problem presented above, the stu-
dent problem, and the cat problem. The probability data were
presented using natural frequencies, with three sets of data (see
Table 1). Scenarios and sets of frequency data were rotated to
create nine versions of the questionnaire, which were randomly
allocated to participants.

All participants received a two-page questionnaire presenting
the three problems to complete on the first page. A blank space
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of approximately 5 cm had been left between each problem to
allow participants to record their thoughts. The second page
presented a French translation of the numeracy scale developed
by Lipkus, Samsa, and Rimer (2001; see Appendix). Partici-
pants in the high-interactivity condition were also provided
with three sets of 4� � 2.5� custom-made cards representing the
elements in each three problems presented (see Figure 1 for an
illustration). Thus we used a 2 (level of interactivity) � 3
(problem) design, with repeated measures on the last factor.

Participants were approached by the experimenter who in-
vited them to take part in a study on their ability to reason with
numbers. Upon consenting to participate, people in the low-
interactivity condition received the questionnaire and were
asked to use the space below each problem to explain how they
arrived at their answer, either by writing down all the steps in

their reasoning or by noting which numbers they used for
deriving their answer.

Participants in the high-interactivity condition also received
three packs of 20 cards, one for each problem. Each pack
contained a number of H & D, H & not-D, not-H & D, and
not-H & not-D cards which matched the quantities stated in the
corresponding problem. These cards were introduced by telling
participants that the problems they were about to solve were
quite difficult and that using cards had been shown to help
solving them. The experimenter explained that she was to
observe how they would use the cards for solving the problems.
The experimenter then presented the pack of cards correspond-
ing to the first problem on the questionnaire and explained that
the cards represented the different possibilities mentioned in the
problem. The following script illustrates how participants who

Figure 1. Sample of cards used in the high-interactivity condition in Experiments 1 and 2. See the online article
for the color version of this figure.

Table 1
Sets of Frequencies and Conditional Probabilities Used in Experiments 1 and 2, Respectively

Set 1 Set 2 Set 3

Frequency Probability Frequency Probability Frequency Probability

Base rate 12/20 60% 15/20 75% 4/20 20%
Hit rate 6/12 50% 9/15 60% 3/4 75%
False-alarm rate 2/8 25% 1/5 20% 8/16 50%
Bayesian answer 6/8 75% 9/10 90% 3/11 27%
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had to complete the glass problem first were introduced to the
cards:

For example, the first problem (experimenter picks the relevant pack
of cards) relates to leisure activities such as watching TV (experi-
menter presents a card showing a TV) or riding a bicycle (experi-
menter presents a card showing a bicycle). Some of these cards show
a child with glasses on the back while other show a child without
glasses. For example, if there is a TV on one side, there might be a
child with glasses on the other side (experimenter turns a TV card and
reveals a child with glasses) or a child without glasses (experimenter
turns another TV card over and reveals a child without glasses).

Participants were instructed to arrange the cards so that they
could better understand the information presented in the problems.
For each problem, all cards were shuffled and presented in a deck
with information about one of the base-rate categories (e.g., a TV
or a bicycle in the glasses problem) facing up. After having solved
all three problems and completed the numeracy scale, they were
thanked and debriefed.

Results and Discussion

Answers were classified as Bayesian using Gigerenzer and
Hoffrage’s (1995) strict outcome criterion. Specifically, an answer
was categorized as Bayesian if the numerical response matched the
Bayesian solution perfectly (rounded up or down to the next full
percentage point), for a given set of numbers (see Table 1).
Moreover, written protocols were used to classify answers—an-
swers from participants who provided a fraction without perform-
ing a division or who produced a correct Bayesian ratio but made
a calculation error for the final division were nevertheless classi-
fied as Bayesian.

The primary objective of this study was to assess whether the
level of interactivity afforded by the task would affect Bayesian
performance. We also wanted to examine whether numeracy
would moderate the effect of interactivity and whether perfor-
mance would increase with practice. Numeracy scores on the
Lipkus et al.’s (2001) were skewed toward the maximum scores
(median � 9, range � 3–11, Cronbach’s alpha � .610). This is a
well-documented issue with this scale, which has usually been
addressed in past research by using median splits (e.g., Chapman
& Liu, 2009; Hill & Brase, 2012; Peters et al., 2006). Median splits
in multiple predictor models, however, can also create spurious
effects by increasing the probability of Type I errors, especially for
interaction tests (Maxwell & Delaney, 1993). Thus, to avoid the
issues associated with using median splits for continuous predic-
tors, we examined the effect of numeracy, practice, and interac-
tivity using a model comparison approach (Judd, McClelland, &
Ryan, 2009).

To test for between-subjects effects, we regressed the average
performance over the three problems on three predictors: interac-
tivity (contrast-coded �1 for paper-and-pencil and 1 for paper-
and-pencil with cards), the mean deviation form of the numeracy
score, and the product of these two variables. We regressed the
difference in performance between Problem 1 and 3 on these
predictors to test for within-subject effects. The descriptive statis-
tics and intercorrelations for the model variables are presented in
Table 2. The results of the regression analyses are presented in
Table 3.

People were able to draw Bayesian inference, as the overall
mean proportion of Bayesian answers was significantly different
from zero. The increase in interactivity offered by the cards was asso-
ciated with a significant increase in performance: MLow_interactivity � .52,
SD � .41, MHigh_interactivity � .73, SD � .36, p � .008. Higher
numeracy scores also resulted in better performance, p � .009, as
did practice; MFirst_problem � .56, SD � .50, MThird_problem � .69,
SD � .47, p � .013. There was no evidence that numeracy
moderated the effect of interactivity on performance, p � .30, the
effect of practice, p � .748, or both, p � .549. Interestingly,
however, the interaction between interactivity and practice was
statistically significant, p � .036. Figure 2 illustrates this finding.
Within-subject contrast tests for the role of interactivity on practice
revealed a significant linear trend between practice and perfor-
mance in the high interactivity group, F(1, 44) � 14.24, p � .001,
but not in the low interactivity group, F � 1. So, independently of
numeracy skill levels, higher interactivity (pen-and-pencils with
cards) resulted in improved performance through practice whereas
performance stagnated in the low interactivity context (pen-and-
pencil only). These results thus demonstrate that providing partic-
ipants with the opportunity to interact with the problem data
through sampling cards greatly enhances their performance, inde-
pendently of their numeracy skills.

Experiment 2

In Experiment 1, we tested the effect of interactivity using
Bayesian reasoning tasks that presented statistical information in
the form of natural frequency statements. This information format
is known to facilitate Bayesian performance (e.g., Gigerenzer &
Hoffrage, 1995). By contrast, as we reviewed earlier, problems
that use single-event probabilities statements are notoriously
harder to solve: Performance rates usually plummet to 10% to
15%, and intensive training sessions are required to help individ-
uals draw appropriate inferences from tasks using this information
format. Experiment 2 aimed to investigate whether performance
would still benefit from the increase in interactivity afforded by the
availability of playing cards when using single-event probability
statements to present the statistical data. Specifically, it was de-
signed to test which of the following three alternative predictions
held true. First, a strong prediction derived from the systemic
cognition approach would be that allowing participants to coordi-
nate mental and material resources should be sufficient to enable
them to draw Bayesian inferences, even without instructions, and

Table 2
Means, Standard Deviations, and Intercorrelations for
Numeracy and Bayesian Performance Variables in Experiment 1

Variable M SD 1 2

Predictors
1. Interactivity (�1 � absent, 1 � present) —
2. Numeracy 8.61 1.85 �.03 —

Outcomes
3. Mean Bayesian performance (Y0) 0.62 0.40 .26� .27�

4. Difference in performance (Y1) 0.13 0.50 .22� .03

Note. Y0 � �
3

1

yi. Y1 � y3 � y1, where yi is the performance on trial i.
� p � .05.
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independently from the statistical information format. If this were
the case, the majority of participants should be able to solve
problems using single-event probability statements in an interac-
tive thinking context. Second, a weak prediction would be that the
manipulability of the task information is a necessary but not
sufficient condition for enabling Bayesian reasoning: There also
needs to be a one-to-one mapping between the parameters that
define the task at the abstract level (e.g., natural frequencies) and
the parameters that define the task at the concrete level (e.g.,
countable cards). If this were the case, merely providing partici-
pants with countable cards in addition to the linguistic description
of a Bayesian task using single-event probability statements should
not be sufficient to elicit correct judgments from the majority of
participants. Finally, an intermediate prediction would be that
participants who have sufficient mental resources (e.g., in the form
of higher numeracy skills) would be able to use the manipulable
materials as a scaffold whereas those with lower cognitive re-
sources would not.

Method

Participants. A total of 90 individuals (58 women and 32
men; mean age � 23 years, SD � 4.28) volunteered to take part in
the experiment. The data were collected individually at a public
library. The sample included 79% art and social science students
and 10% of mathematics or science students. Participants were
either postgraduates (47%), undergraduates (48%), or had com-
pleted high school or did not specify (5%). The experiment was
conducted in French.

Design and procedure. As in Experiment 1, participants were
randomly allocated to one of two conditions: a high-interactivity
condition or a low-interactivity (control) condition and completed
three problems, thus a 2 (level of interactivity) � 3 (problem)
design was used, with repeated measures on the last factor. The
materials used were identical to those used in Experiment 1, except
that the numerical data in all problems were presented in the form
of single-event probability statements (e.g., “The probability that a
pupil watches too much TV is 60%”; see Table 1 for the full set of
numerical data used). Participants’ strategies for computing the

final answer as well as their score on the translated Lipkus et al.’s
(2001) 11-item numeracy scale were also recorded.

Results and Discussion

Answers were again classified as Bayesian using a strict out-
come criterion, as in Experiment 1. The primary objective of the
present experiment was to examine whether the increase interac-
tivity level afforded by the cards would also improve Bayesian
performance when the problem information was based on single-
event probabilities statements. A secondary objective was to ex-
amine whether practice and numeracy moderated the effect of
interactivity on performance. We subjected the data to the same
model comparison analysis used in Experiment 1. The descriptive
statistics and intercorrelations for the model variables are pre-
sented in Table 4. The results of the regression analyses are
presented in Table 5.

As in Experiment 1, there was evidence that people have the
ability to draw Bayesian inferences, as the overall mean perfor-
mance was significantly different from zero. Once more, higher
interactivity levels led to a significant and substantial increase in
performance rate; MLow_interactivity � .09, SD � .25, MHigh_interactivity �
.57, SD � .42, p � .001. The only other significant predictor of
performance was the level of numeracy, p � .02, although nu-
meracy did not moderate the impact of interactivity. Unlike what
we observed in Experiment 1, practice did not significantly im-
prove performance. Those results thus show that increasing the
level of interactivity afforded by the Bayesian tasks was sufficient
to enable the majority of participants to draw accurate statistical
inferences even when the statistical information is presented in the
form of single-event probability statements: 58% of participants
successfully solved the last problem in the high interactivity con-

Table 3
Regression Analysis Summary for Interactivity, Numeracy, and
Practice Predicting Bayesian Performance in Experiment 1

Variable B 95% CI � t p

Outcome: Mean Bayesian
performance (Y0)

Overall 0.62 [0.54, 0.7] — 15.71 <.001
Interactivity 0.11 [0.03, 0.19] 0.27 2.71 .008
Numeracy 0.06 [0.01, 0.1] 0.27 2.66 .009
Interactivity � Numeracy �0.02 [�0.07, 0.02] �0.10 �1.04 .300

Outcome: Difference in
performance (Y1)

Practice 0.13 [0.03, 0.24] — 2.53 .013
Interactivity � Practice 0.11 [0.01, 0.22] 0.22 2.13 .036
Numeracy � Practice 0.01 [�0.05, 0.07] 0.03 0.32 .748
Interactivity �

Numeracy � Practice �0.02 [�0.07, 0.04] �0.06 �0.60 .549

Note. R2 for Mean Performance � .15; R2 for Performance Difference �
.05; CI � confidence interval for B.

Figure 2. Proportion of Bayesian answers with natural frequency state-
ments as a function of interactivity level (low, paper-and-pencil only vs.
high, paper-and-pencil with cards), and problem trial (first, second, or
third).
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dition, compared with 9% in the low-interactivity condition. This
finding thus supports the strong prediction derived from the sys-
temic cognition approach. The fact that practice no longer led to a
linear improvement of performance with increased interactivity
suggests that participants’ cognitive resources were stretched by
the coupling cost involved in mapping the problem information
(presented in the form of single-event probabilities) and its
material implementation (represented in the form of playing
cards). This is evidenced by the fact that the success rates
observed in this experiment were much lower than those
achieved in Experiment 1 with natural frequency statements
where, for example, 84% of participants correctly solved the
last problem in the high interactivity condition. This suggests
that natural frequencies also have a facilitating effect, above
interactivity.

There are possible limitations to these results, however. First,
the experimental conditions in Experiments 1 and 2 offered higher
levels of interactivity and afforded more action possibilities than
the controlled condition, but this was not the only difference. The
use of playing cards in the high interactive conditions also led to
the specification of information that remained implicit in the
classic paper-and-pencil versions of Bayesian reasoning tasks. For
example, in the glasses problem, the use of cards resulted in the
explicit description of pupils who did not watch too much TV as
bicycles riders (in the form of a bicycle image on the cards in the
high-interactivity condition). So whereas the classic paper-and-
pencil version of the problem mentions that “12 out of every 20
pupils watch too much TV,” the provision of cards also specified
the contrast to the base category as it represented this information
using a sample of 12 cards showing a TV as well as eight cards
showing a bicycle. To test for this potential confound, Experiment
3 examined whether explicitly unveiling the alternative base rate
category in a paper-and-pencil task would be sufficient to replicate
the level of performance observed with cards.

A second limitation concerns the reasoning processes that may
underpin performance in highly interactive conditions. One could
argue that successful participants did not “reason” through the task
but “simply” counted the number of cards presenting the target
hypothesis H among the cards presenting the data D. Such a
strategy, however, is only seemingly simple. In the glasses prob-
lem mentioned above, this strategy would amount to (a) sorting the
deck of cards into a pile of cards showing D, a child wearing glasses,
and a pack of cards showing not-D, a child without glasses; (b) counting

the number of cards showing a child with glasses, n(D); (c) within
the set of cards showing D, a child without glasses, sorting the
cards into a pack of cards showing H, a TV on the other side and
a pack of cards showing not-H, a bicycle on the other side; (d)
counting the number of cards showing a TV among the cards
showing a child with glasses on the other side, n(D&H); and (e)
report n(D&H) out of n(D). In Experiment 2, the experimenter
made notes of the different manipulations that spontaneously arose
in the high-interactivity condition for a subset of participants (n �
27). Table 6 summarizes these observations. A little under half the
participants who correctly solved the problem worked through the
problem by sorting cards in D and not-D piles. The remainder
started from the base-rate information, and began by sorting cards
in H and not-H piles. It is difficult to argue that one strategy is
superior to the other. Sorting cards based on the presence or
absence of D is slightly more efficient—participants can report the
solution in four steps, compared with five steps when one starts by
sorting H and not-H. Nevertheless, these data strongly suggest that
participants did engage in thinking and reasoning about the task,
even if they give only a cursory snapshot of the actions that
participants actually performed while progressing toward the task
goal.

A third limitation of these experiments concerns the possible
generalizability of the effect of interactivity. The sets of cards
provided to support reasoning were such that they always provided
an accurate presentation of the probabilities in the problems. For
example, when the problem stated that “Among these 12 pupils
who watch too much TV, six wear glasses,” the sample of cards
given to participants contained exactly 12 cards showing televi-
sions on the front side and, among those 12 cards, six revealed a
child with glasses on the backside and the remaining six revealed
a child without glasses. It is therefore unclear whether the provi-
sion of cards would continue to boost participants’ performance
(and to what extent) in less constraining circumstances, such as in
the absence of a perfect match between the statistical data in the
problem statement and the sample of cards provided. In like vein,
the extent to which those results depend on intrinsic features of the
cards we have used (i.e., providing information printed on opposite

Table 4
Means, Standard Deviations, and Intercorrelations for
Numeracy and Bayesian Performance Variables in Experiment 2

Variable M SD 1 2

Predictors
1. Interactivity (�1 � absent, 1 � present) —
2. Numeracy 8.86 1.83 .07 —

Outcomes
3. Mean Bayesian performance (Y0) 0.33 0.42 .57��� .26�

4. Difference in performance (Y1) 0.04 0.33 .14 �.16

Note. Y0 � �
3

1

yi. Y1 � y3 � y1, where yi is the performance on trial i.

� p � .05. ��� p � .001.

Table 5
Regression Analysis Summary for Interactivity, Numeracy, and
Practice Predicting Bayesian Performance in Experiment 2

Variable B 95% CI � t p

Outcome: Mean Bayesian
performance (Y0)

Overall 0.33 [0.26, 0.40] — 9.24 <.001
Interactivity 0.24 [0.17, 0.31] 0.56 6.67 <.001
Numeracy 0.05 [0.01, 0.09] 0.20 2.38 .020
Interactivity � Numeracy 0.03 [�0.01, 0.07] 0.14 1.68 .097

Outcome: Difference in
performance (Y1)

Practice 0.04 [�0.03, 0.11] — 1.25 .216
Interactivity � Practice 0.05 [�0.02, 0.12] 0.15 1.39 .170
Numeracy � Practice �0.03 [�0.07, 0.01] �0.17 �1.61 .111
Interactivity �

Numeracy � Practice 0.01 [�0.03, 0.05] 0.05 0.43 .670

Note. R2 for Mean Performance � .40; R2 for Performance Difference �
.05; CI � confidence interval for B.
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sides) also bears questioning. Experiment 4 provides an empirical
test of these issues.

Experiment 3

Method

Participants. A total of 70 psychology students (58 women,
11 men, one unspecified, mean age � 24 years, SD � 7.85) took
part in the experiment in exchange for course credits. The data
were collected in a classroom setting. The experiment was con-
ducted in English.

Design and procedure. Half the participants received a prob-
lem with natural frequency statements, whereas the other half
received a problem using single-event probability statements.
Within each of these conditions, half of the participants received a
standard version of the problem specifying Pr(H), Pr(D | H), and
Pr(D | not-H); for the other half, the problem fleshed out all prob-
abilities and thus explicitly mentioned Pr(not-H), Pr(not-D | H),
and Pr(not-D | not-H) as well. We used six sets of statistical data
and three sets of scenarios. Participants were randomly allocated
one version of the resulting sample of 72 problems.

Results and Discussion

Answers were classified as Bayesian using Gigerenzer and
Hoffrage’s (1995) strict outcome criterion. None of the partici-
pants found the correct answer with the problem using single-event
probability statements, whether it presented the standard informa-
tion (n � 17) or the fully fleshed out data (n � 18). Using natural
frequencies helped improve performance, 41% of participants re-
sponded with the Bayesian answer in the standard natural fre-
quency version of the problem. This success rate dropped to 28%
using the fully fleshed out natural frequency version although this
decrease in performance was not significant, �2(1, N � 35) � .70,
p � .41. Thus, there was no evidence that fleshing out the statis-
tical information in a paper-and-pencil problem would improve
performance. If anything, the evidence suggests it might impair it,
possibly because fleshing out implicit information gives rise to a
more complex representation but, by the same token, increases the
cognitive costs involved in maintaining it in working memory.
These results contrast with the sizable improvement in perfor-

mance observed with the playing cards and suggest that the cog-
nitive support provided by the cards goes above and beyond the
provision of an explicit representation of the alternative base rate
category.

Experiment 4

Experiment 4 was designed to assess the generalizability of the
facilitating effect of interactivity over problems whose numeric
properties do not map perfectly onto the cards, over the form of the
material presentation provided, as well as to further investigate
how the manipulation of playing cards may give rise to successful
statistical reasoning. More specifically, this experiment had three
objectives. First, it aimed to examine whether reasoning perfor-
mance would still benefit from the provision of playing cards when
the sample of cards provided was not isomorphic to the sample
described in the problem text. In this situation, participants would
first need to select the appropriate number of cards from each
subset H&D, not-H&D, H&not-D, and not-H&not-D to recreate
the set described in the problem. Pilot testing revealed that upon
realizing the set of cards provided was nonisomorphic to the
problem data, participants simply stopped interacting with the
cards and attempted instead to solve the problem “in their head.”
At debriefing, they explained they had inferred the experimenter
had “tricked them” into using the cards and concluded they were
instead expected not to use them, despite being explicitly in-
structed to do so to solve the task. To circumvent this issue and
nevertheless examine whether handling cards may support perfor-
mance even when using nonisomorphic samples, we used a within-
subject design where participants first interacted with sets of cards
that were isomorphic to the sets described in the problem text,
followed by trials where the sets of cards and the sets described in
the text were no longer isomorphic. This had the advantage of
allowing participants to learn independently (i.e., without instruc-
tions) how to couple the cards to the written information and next
to examine whether such coupling would continue to benefit their
thinking even when the card sets and the problem data were no
longer aligned.

A second objective was to examine whether statistical reasoning
performance would still be improved by the provision of manip-
ulable playing cards to represent statistical information when in-
formation about the hypothesis and the data was printed side by

Table 6
Sequences of Card Manipulations Observed on the First Problem Solved by Participants in the High-Interactivity Condition of
Experiment 2

Card manipulation (Experiment 2, high-interactivity condition, first problem) Total

Sorts H and not-H; Among H, sorts D and not-D; Repeats among not-H; Selects D&H and D&not-H; Counts D; Counts D&H;
Reports D&H out of D. 9

Sorts D and not-D; Counts D; Sorts D&H and D&not-H; Counts D&H; Reports D&H out of D. 7
Sorts H and not-H; Counts D&H; Reports D&H out of Total. 3
Does not use the cards. 2
Sorts H and not-H; Among H, sorts D and not-D; Repeats among not-H; Selects D&H and D&not-H; Counts D; Counts D&H;

Reports D out of Total 2
Sorts H and not-H; Among H, sorts D and not-D; Repeats among not-H; Counts D&H; Counts D&not-H; Reports D&H - D&not-H. 1
Sorts H and not-H; Among H, sorts D and not-D; Repeats among not-H; Counts Total; Counts H; Reports H out of Total. 1
Sorts H and not-H; Counts H; Counts D&H; Report D&H out of H. 1
Sorts H and not-H; Counts H; Reports H out of Total. 1
Grand total 27
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side on the front side of cards. On the one hand, one might expect
that providing information side by side would not alter perfor-
mance if improvement were underpinned by the increased manip-
ulability of the material afforded by the playing cards. On the other
hand, making information about both the hypothesis (H or not-H)
and the data (D or not-D) available on one side of the card might
increase processing costs because it requires reasoners to consider
two pieces of information at once instead of one. This increase in
processing cost could dampen the rise in performance originally
observed with the two-sided cards we had used in previous exper-
iments. Given this possibility, and to avoid floor effects, we chose
to present the problem data using natural frequency statements
because all participants benefitted from the use of cards in Exper-
iment 1, whether they had high or low levels of numeracy.

Finally, the third and final objective of this experiment was to
provide a better understanding of how interactivity worked while
participants used the cards to support their thinking by capturing
and analyzing their actions as they unfolded in time, using sys-
tematic observation and sequential analysis (Bakeman & Quera,
2011).

Method

Participants. A total of 20 psychology students (18 women,
two men, mean age � 25 years, SD � 7.66) took part in the
experiment in exchange for course credits. The data were collected
individually in the Kingston Psychology Observation Laboratory.
The experiment was conducted in English.

Design and procedure. Participants were invited to solve a
series of six Bayesian reasoning problems presenting the statistical
information using natural frequency statements. We used six sce-
narios adapted from Zhu and Gigerenzer (2006): the three scenar-
ios used in Experiments 1 and 2 as well as the cookie problem, the
teeth problem, and the overweight problem. We used six new sets
of data (see Table 7). Scenarios and sets of frequency data were
rotated to create 24 versions of the questionnaire, which were
randomly allocated to participants.

Upon consenting to participate and to be filmed, participants
were sat at a table. The experiment unfolded in two parts. In the
first part, participants were asked to solve three Bayesian problems
with the help of an associated pack of cards. The packs were
prepared so that the number of cards provided matched the fre-
quency counts in the problem statements (isomorphic samples).
The experimenter introduced the cards for the first task with the
instructional script used in Experiment 1. In addition, participants
were told that they would need to make use of all the cards given
to them to better understand the information presented in the
problems. Each problem statement was printed on an A4 sheet
page using a 26-point font size and was accompanied by a pack of

4� � 2.5� custom-made cards representing the elements in each
problem side-by-side (see Figure 3 for an illustration). In the
second part, participants were asked to solve an additional three
sets of problems but were also informed that, this time, they would
first need to decide how many cards they should use to better
understand the information presented in the problems. They were
provided with packs of cards containing 10 exemplars of each card
type (D&H, D&not-H, not-D&H, and not-D&not-H). While par-
ticipants were working on the problem, the experimenter returned
to a control room and filmed their hand movements from an
overhead camera. Upon each task completion, participants called
the experimenter and announced their answer. They were then
provided with the next task statement and associated pack of cards
without further instruction. After the third task was completed (end
of Part 1), participants filled in Lipkus et al.’s (2001) 11-item
numeracy scale. When they had announced their solution to the
sixth problem, participants were thanked and debriefed. Thus, a 2
(set correspondence) � 3 (problem position) within-subject design
was used.

Results and Discussion

Bayesian performance. Answers were classified as Bayesian
using a strict outcome criterion as in previous experiments. The primary
objective of the present experiment was to test whether the increase
in performance observed when participants could use playing
cards to support their thinking was due to the fact that the number
of cards matched the statistical information in the written descrip-
tion of the Bayesian tasks. We also examined whether practice and
numeracy moderated the effect of interactivity, using a different
set of playing cards showing data and hypothesis information
printed side by side. We subjected the data to the same model
comparison analysis used for the data from Experiment 1. The
descriptive statistics and correlations for the model variables are
presented in Table 8. The results of the regression analyses are
presented in Table 9.

There was no evidence that the type of sample (isomorphic vs.
nonisomorphic) made a difference to participants’ Bayesian per-
formance; Misomorphic � .58, SD � .36, Mnonisomorphic � .58, SD �
.47, p � 1.00; likewise, numeracy did not affect performance, p �
.272. Practice, however, did have a significant effect on perfor-
mance, Mfirst � 0.45, SD � 0.43, Mlast � 0.68, SD � 0.41, p �
.016, thus replicating the practice effect associated with the use of
cards we had observed in Experiment 1. None of the interaction
terms reached statistical significance.

Behavioral analysis. To provide a better understanding of the
processes by which an increased level of interactivity may support
participants while they worked through the problems, we recorded
and analyzed their hand movements from one camera attached to

Table 7
Sets of Frequencies Used in Experiment 4

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Base rate 4/20 14/20 6/20 6/20 8/20 12/20
Hit rate 3/4 7/14 4/6 2/6 7/8 8/12
False-alarm rate 6/16 2/6 6/8 7/14 6/12 2/8
Bayesian answer 3/9 (33%) 7/9 (78%) 4/10 (40%) 2/9 (22%) 7/13 (54%) 8/10 (80%)
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the ceiling and one camera attached on the wall of our observation
lab (see Figure 4 for an illustration of the videographic evidence).
To shed light on the qualitative differences between high and low
numerates, we selected the recordings of high numerates who

correctly solved the first three tasks (n � 21) and the recordings of
low numerates who did not succeed at solving the first three tasks
(n � 16). We restricted our analysis to the isomorphic problems to
ensure that we only coded behaviors related to representation and
information processing as opposed to efforts to transform the
nonisomorphic sample of cards in an isomorphic one. Following
Bakeman and Quera (2011), we began to develop a coding scheme
through an iterative process. We first watched a few video record-
ings repeatedly to identify generic mutually exclusive and exhaus-
tive codes for behaviors (e.g., “does not touch cards,” “picks up the
pack of cards,” “examines cards,” “moves cards”).

We then pilot-tested our coding scheme on new video record-
ings to identify codes that could be reliably applied to all videos.
Coding was also theoretically grounded in concepts from the
literature on distributed cognition and insight problem solving.
This iterative process led us to define four types of activities
participants engaged in: projection, marking, presentation change,
and epistemic activity. Each type of activity was defined in terms
of specific actions we observed. Table 10 provides details of the
final coding scheme. The “projection” activity makes reference to
the process of projecting mental representations onto the visible

Table 8
Means, Standard Deviations, and Intercorrelations for
Numeracy and Bayesian Performance Variables in Experiment 4

Variable M SD 1

Predictor
1. Numeracy (X) 8.20 2.14 —

Outcomes
2. Mean performance (Y0) 0.58 0.38 .26
3. Difference in performance by sample type (Y1) 0.00 0.34 �.05
4. Difference in performance by practice (Y2) 0.23 0.38 �.25
5. Difference in performance by sample type and

practice (Y3) �0.25 0.72 .17

Note. Y0 �
1

6�1

6

yi; Y1 � �1

3�4

6

yi� � �1

3�1

3

yi�; Y2 �
1

2
�y3 � y6� �

1

2

�y1 � y4�; Y3 �
1

2
�y6 � y4��

1

2
�y3 � y1�, where yi is the performance on trial i.

Figure 3. Sample of cards used in Experiment 4. See the online article for the color version of this figure.
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environment hypothesized by Kirsh (2013). We coded this activity
whenever participants made no action on the cards. The “marking”
activity refers to a type of behavior known to support cognition by
directing attention and helping perception (Carlson, Avraamides,
Cary, & Strasberg, 2007; Kirsh, 1995). We coded this activity
whenever participants interacted with the cards without gathering
information or making significant change to the perceptual layout.
Marking actions included nudging the cards slightly, marking
cards with a hand, or one or more fingers, and holding onto the
cards. The “presentation change” activity was informed by the
concept of representation restructuring in the insight problem-
solving literature, which describes reasoners’ attempt to restructure
the representation of a problem when searching for a fruitful
solution (Fleck & Weisberg, 2013). Presentation change actions
included picking up, putting down, or laying cards out and trans-
forming the layout by rearranging cards. Finally, the “epistemic
activity” included actions aiming to support mental computations
or uncover information that is hidden (Kirsh & Maglio, 1994),
such as sampling the cards and counting. To ensure that all actions
coded were mutually exclusive, we also coded quantitative cues.
For instance, if a participant moved a card less than 2 cm away
from its original position on the table, this was coded as a “nudges
cards” action (Action 1.1 in the Coding Scheme). The behaviors
observed in the video recordings were coded using the Noldus
Observer XT 11.0 software2 to record onset and offset times of the
behavioral events listed in Table 10, continuously sampling be-
havior from the beginning of the task until participants announced
their answer. Table 11 illustrates the data obtained by coding the
video footage for one participant.

To evaluate intercoder reliability, we trained a research assis-
tant, blind to the outcome of the trial (successful or unsuccessful)
to code the videos using the coding scheme developed by the first
author (see Table 11). The initial average Cohen’s 	, taking both
the type of action and the sequence of events coded into account
with a tolerance window of 1 s, was .78, with an 82% average
percentage of initial agreement. All disagreements were resolved
through consensus. The final Cohen’s 	 taking both the timing of
coding and the sequence of events into account was .88, with a
91.35% average percentage agreement.

We then analyzed two behavioral measures: The total amount of
time participants engaged in each category of behavior (in sec-
onds) and the proportion of time they did so out of the total time
they spent working on the task. Successful reasoners were slightly
faster at completing the task but this difference was not statistically
reliable, MBayesian � 124 s, 95% CI [98, 150], Mincorrect � 155 s,
95% CI [116, 194], t(35) � 1.34, p � .19. Behavior durations
were subjected to a 2-between � 4-within mixed analysis of
variance (ANOVA). The between-subjects factor was the final
performance (incorrect vs. Bayesian) and the within-subject factor
was the type of behavior (projection, marking, presentation
change, or epistemic action; see Table 10 for a full definition).
Results showed that participants spent different amounts of time
engaging in the different types of behaviors coded, F(3, 105) �
20.3, MSE � 648, p � .001, 
p

2 � .37. The average behavior duration
did not reliably vary as a function of performance, MBayesian � 31.0 s,
95% CI [23.3, 38.7], Mincorrect � 38.8 s, 95% CI [29.9, 47.6], F(1,
35) � 1.80, MSE � 302, p � .19, 
p

2 � .05. However, there was
a significant interaction between performance and behavior type,
F(3, 105) � 6.02, p � .001, 
p

2 � .15. Figure 5 illustrates this
interaction. Fisher’s Least Significant Difference post hoc paired
comparisons revealed that unsuccessful reasoners spent a signifi-
cantly longer time marking the cards than they did on any other
type of behavior. Then they engaged most in presentation change,
and they spent the least amount of time engaging in epistemic
actions and projection (i.e., thinking without touching or interact-
ing with the cards). By contrast, successful reasoners spent signif-
icantly more time engaging in projection, marking, and presenta-
tion change than epistemic actions.

Finally, we subjected the proportion of time people spent on
each type of behavior out of the total time they spent solving the

2 The Observer XT is a software application used to code and analyze
observational data. It had been used in several areas of research, such as
infant studies (Vogel, Monesson, & Scott, 2012), doctor–patient interaction
studies (Zhou, Cameron, Forbes, & Humphris, 2012), or ergonomics re-
search (Hurley, Marshall, Hoganm, & Wells, 2012). It facilitates the
development of coding manuals, the coding of video data, as well as the
conduct of interrater reliability analyses.

Table 9
Regression Analysis Summary for Numeracy, Type of Sample and Practice Predicting Bayesian
Performance in Experiment 4

Variable B 95% CI � t p

Outcome: Mean Bayesian performance (Y0)
Overall 0.58 [0.41, 0.76] — 6.91 <.001
Numeracy 0.05 [�0.04, 0.13] 0.26 1.13 .272

Outcome: Difference in performance by sampling
(Y1)

Type of sample 0.00 [�0.17, 0.17] — 0.00 1.00
Type of Sample � Numeracy �0.01 [�0.09, 0.07] �0.05 �0.20 .841

Outcome: Difference in performance by practice (Y2)
Practice 0.23 [0.05, 0.40] — 2.67 .016
Practice � Numeracy �0.05 [�0.13, 0.04] �0.25 �1.11 .283

Outcome: Difference in performance by sampling and
practice (Y3)

Type of Sample � Practice �0.25 [�0.59, 0.09] — �1.54 .140
Type of Sample � Numeracy � Practice 0.06 [�0.11, 0.22] 0.17 0.74 .470

Note. R2 for Y0 � .07; R2 for Y1 � .00; R2 for Y2 � .06; R2 for Y3 � .03; CI � confidence interval for B.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

592 VALLÉE-TOURANGEAU, ABADIE, AND VALLÉE-TOURANGEAU



task to the same 2-between � 4-within mixed ANOVA. As before,
there was no reliable difference based on performance. On aver-
age, both successful and unsuccessful participants spent 25% of
their time engaging with each type of behavior, F � 1. Overall,
however, participants’ time was not distributed equally between
different types of behavior, F(3, 105) � 22.7, MSE � 0.03, p �
.001, 
p

2 � .39. This apparent contradiction is better explained by
the significant interaction between behavior types and perfor-
mance, F(3, 105) � 6.94, p � .001, 
p

2 � .17. Bonferroni-
corrected post hoc independent t tests comparisons confirmed that
Bayesian reasoners spent a significantly greater proportion of their
time changing the presentation of the layout compared to unsuc-
cessful reasoners, t(35) � 3.16, p � .001, Cohen’s d � 1.07
whereas unsuccessful reasoners spent a significantly greater pro-
portion of their time marking the cards, t(35) � 3.57, p � .001,
Cohen’s d � 1.21 (see Figure 6).

To summarize, results from Experiment 4 corroborated the main
finding of Experiments 1 and 2, namely increasing the level of

interactivity afforded by a Bayesian reasoning task (using playing
cards to represent possibilities in the problems) greatly improved
statistical reasoning. Moreover, this improvement appeared to be
independent of particular characteristics of the material used to
enhance interactivity: A similar pattern of results was observed
when the information about the hypothesis (H vs. not-H) and the
data (D vs. not-D) was printed on opposite sides of the playing
cards (Experiment 1) or side-by-side (Experiment 4). Likewise,
performance was not significantly impaired in the absence of a
one-to-one correspondence between the sets described in the prob-
lems and the sets made of playing cards. The behavioral analysis
of participants’ hands movements clarified the processes by which
participants may use the cards to enact their thinking, namely by
acting directly on the structure of the information layout, laying
out cards from the pack, picking them up from the table and
putting them down in a new location or sliding them around to
rearrange them before announcing their solution. Unsuccessful
solvers, by contrast, appeared much less active, often spending

Table 10
Coding Scheme Used to Analyze Video Recordings in Experiment 4

Activities and actions Definition

0. Projection No actions on cards.
0.1. No action Looks at the cards or the task statement but neither hand is touching, pointing, or hovering above cards.

1. Marking Actions on cards that have no obvious epistemic or perceptual impact.
1.1. Nudges cards Moves one or more card(s) slightly (�2 cm) on the table without significantly changing its/their location.
1.2. Marks cards Hand or finger(s) touches, points, or hovers above one or more card(s) without moving or nudging it/them.
1.3. Holds cards Holds one or more card(s) without putting it/them down for at least 2 s.

2. Presentation change Actions on cards that change the perceptual layout.
2.1. Picks up/puts down/lays out card(s) Transfers one or more card(s) from the table to the hand(s) or from the hand(s) to the table.
2.2. Transforms cards layout Significantly transforms the way cards are arranged on the table by sliding one or more card(s) (�2 cm) to

reorder it/them or move it/them to a completely different location.
3. Epistemic actions Actions on cards that enable information processing.

3.1. Samples cards Examines 3 or more cards in hands by flicking through them (�2 s).
3.2. Counts cards Rapidly moves a hand or finger(s) from one card to the other over three cards or more.

Figure 4. Snapshot of the video recording of a participant engaged in the task in Experiment 4. The individual
appearing here gave signed consent for her likeness to be published in this article. See the online article for the
color version of this figure.
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several seconds holding the cards in their hands, touching or
pointing at cards without moving their hands, or nudging them
ever so slightly but without making any significant transformation
to the layout.

Taken together, these experiments show that the active physical
manipulation of the statistical information in Bayesian tasks can
transform statistical reasoning above and beyond the support of-
fered by presenting the problem information in a frequency format.
Admittedly, however, those experiments have not provided direct
evidence for the claim that it is the manipulation of the cards per
se that causes the increase of performance. One could argue that
the cards merely offer an alternative way of representing the
frequency counts using a particular, discrete, countable, and iconic
representation. Recent research has shown that providing a repre-
sentation of the statistical information with discrete icons led to a
significant increase in Bayesian reasoning performance (Brase,
2009), although iconicity may not matter so much as the provision
of a visual presentation of nested sets using countable dots (Sirota
et al., 2014). In any case, it could be that the manipulation of the
cards itself is irrelevant to the success rate observed in our exper-
iments. Instead, it could be that the card manipulation resulted in
a congenial external representation of the statistical data, which
itself was responsible for the increase in performance. Alterna-
tively, if the physical manipulation of cards did matter, it may be
merely because it increased participants’ engagement with the task
rather than because it transformed their cognitive processing of the
task.

Experiment 5

Experiment 5 was designed to test whether the manipulation of
cards has a direct influence on statistical reasoning, above and
beyond an incidental increase in participants’ involvement with the
task. Specifically, this experiment had two aims. First, it aimed to
examine whether it was the physical manipulation of cards rather
than the discrete and countable layout resulting from this manip-
ulation, which improved statistical reasoning. Second, it aimed to
examine whether the effect of the physical manipulation was
mediated by participants’ level of engagement with the task.

Method

Participants. A total of 40 psychology students (35 women,
five men, mean age � 24 years, SD � 9.43) took part in the
experiment in exchange for course credits. The data were collected
individually in the Kingston Psychology Observation Laboratory.
The experiment was conducted in English.

Design and procedure. Participants were invited to solve a
series of three Bayesian reasoning problems presenting the statis-
tical information using natural frequency statements. We used
three scenarios adapted from Zhu and Gigerenzer (2006): the cat
problem, the glasses problem, and the teeth problem. We used the
frequency sets 4, 5, and 6 from Experiment 4 (see Table 7).
Scenarios were rotated to produce two orders, which were ran-
domly allocated to participants. Upon consenting to participate and
to be filmed, participants were sat at a table. Half of the partici-
pants were asked to solve three Bayesian problems with the help of

Table 11
Example of Raw Observational Data Coded From the Video of
a Successful Participant

Event Event start time Behavior

1 00:00:00 1.0 No action
2 00:00:02 2.2 Transforms cards layout
3 00:00:03 1.2. Marks cards
4 00:00:05 2.1 Picks up/puts down/lays out
5 00:00:06 1.1. Nudges cards
6 00:00:08 2.2 Transforms cards layout
7 00:00:16 1.1. Nudges cards
8 00:00:17 2.2 Transforms cards layout
9 00:00:24 1.1. Nudges cards

10 00:00:26 2.1 Picks up/puts down/lays out
11 00:00:36 1.1. Nudges cards
12 00:00:37 2.1 Picks up/puts down/lays out
13 00:00:42 1.1. Nudges cards
14 00:00:43 2.1 Picks up/puts down/lays out
15 00:00:44 1.1. Nudges cards
16 00:01:01 1.0 No action
17 00:01:03 1.2 Counts
18 00:01:09 1.0 No action
19 00:01:12 1.2 Counts
20 00:01:16 1.0 No action
21 00:01:23 1.2 Counts
22 00:01:26 1.0 No action
23 00:01:28 1.2. Marks cards
24 00:01:38 1.2 Counts
25 00:01:41 1.2. Marks cards
26 00:01:51 1.0 No action
27 00:01:52 Answers

Figure 5. Mean durations of the four categories of behavior coded. � p �
.05, �� p � .01, ��� p � .001 denote significant mean differences based on
Fisher’s LSD post hoc paired comparisons.
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an associated pack of cards, using the same materials and proce-
dure used in Experiment 4 (isomorphic samples). The remaining
half of the participants were presented with a laminated A3 sheet
picturing the sample of cards in a scatter (see Figure 7 for an
illustration of the Glasses problem). They were instructed to keep
their hands and fingers still on the tabletop while they thought
about the problem. To minimize cognitive load, similar cards—
cards representing one of the four categories of information, for
example, all the Pr(D | H) cards—were represented in close prox-
imity on the sheet. Neither pen nor paper was provided. Instead,
participants were instructed to ring a bell once they were ready to
announce their answer, at which time the experimenter reentered
the room to record their answer. Following the completion of each
problem, participants were asked to complete a “flow” experience
questionnaire. Flow is conceptualized as a mental state where one
is deeply absorbed in an activity, which balances one’s skills and
the challenge offered by the activity (Csikszentmihalyi, 1991,
1997). Following Shernoff, Csikszentmihalyi, Shneider, and Sher-
noff (2003), we designed a 9-item scale measuring five key di-
mensions of the experience of flow: engagement (measured
through concentration, interest, and enjoyment), challenge, skill,
and attention (measured through distraction and focus) and state of
mind (measured through anxiety and relaxation). The item com-
position of the scale is presented in Table 12. Each item was rated
on an 8-point scale ranging from 0 (definitely not) to 7 (definitely
yes). After the third task was completed, participants filled in the
numeracy scale developed by Lipkus et al.’s (2001), were thanked
and debriefed. Thus, a 2 (physical manipulation) between-subjects
design was used, with flow and numeracy as continuous predic-
tors.

Results and Discussion

Bayesian performance. Answers were classified as Bayesian
using a strict outcome criterion as in previous experiments. The
primary objective of this experiment was to examine whether the
manipulation of cards itself, rather than the iconic external repre-
sentation they provide, was responsible for the increase in perfor-
mance observed. To answer this question, we tested for between-
subjects effects by regressing average performance over the three
problems on three predictors: interactivity (contrast-coded �1 for
absent and 1 for present), the mean deviation form of the numeracy
score, and the product of these two variables. The descriptive
statistics and intercorrelations for the model variables are pre-
sented in Table 13. The results of the regression analysis are
presented in Table 14. The increase in interactivity offered by the
cards was associated with a significant increase in performance;
MLow_interactivity � .52, SD � .35, MHigh_interactivity � .77, SD �
.31, p � .0098. Higher numeracy scores also resulted in better
performance, p � .002. There was, however, no evidence that
numeracy moderated the effect of interactivity on performance,
p � .384.

Interactivity and flow. A secondary aim of this experiment
was to examine whether the effect of interacting with cards on
performance was mediated by participants’ level of engagement
with the task, using a 9-item scale to measure flow. To test this
mediation hypothesis, we adopted a bootstrapping approach
(Preacher & Hayes, 2004) to assess the indirect effect of interac-
tivity on performance through flow, using 10,000 bootstrap sam-
ples. Results confirmed a direct effect of interactivity on perfor-
mance, Bdirect � .115, SE � .06, t(37) � 2.07, p � .045. However,
the 95% bias-corrected confidence interval for the size of the
indirect effect included zero, thus showing no evidence that the
manipulation of cards had a positive effect on performance
through an increase in flow or engagement with the task,
Bindirect � .010, bootstrap SE � .017, 95% bias-corrected
bootstrap CI [� .017, .053].

Altogether, these results confirmed it is the manipulation of
cards, rather than their physical representation, which is responsi-
ble for the increase of performance observed. In the absence of
physical manipulation, the rate of Bayesian performance was sim-
ilar to that observed by Brase (2009; i.e., circa 50%). Physical
manipulation, by comparison, resulted in significantly higher suc-
cess rates (circa 75%), demonstrating the sizable impact of phys-
ical manipulation over physical representation in this group of
participants. This effect was not mediated by an amplified expe-
rience of flow while manipulating the cards. Taken together, these
results show that physical manipulation does not merely facilitate
information representation, or increase reasoners’ engagement
with the task; it has a direct and sizable effect on statistical
reasoning itself. And although those with higher numeracy skills
performed better than those with lower numeracy skills, there was
no evidence to show that the positive effect of manipulating cards
while thinking through the problem was moderated by partici-
pants’ numeracy skills.

General Discussion

Informed by a systemic approach to cognition (e.g., Hutchins,
2001; Villejoubert, & Vallée-Tourangeau, 2011; Vallée-Tourangeau
& Vallée-Tourangeau, 2014), we surmised that increasing the ma-

Figure 6. Mean percentage of time participant spent on each of the four
categories of behavior coded. ���p � .001 denote significant mean differ-
ences based on Bonferroni-corrected post hoc independent t tests compar-
isons. Proj � Projection; Mark � Marking; PrCh � Presentation Change;
EpAc � Epistemic Action.
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nipulability of the problem information in Bayesian reasoning
tasks would enable participants to solve these tasks successfully
without training. Our results clearly supported this prediction, not
only for tasks using natural frequency statements (Experiments 1,
4, and 5), but also for tasks using single-event probability state-
ments (Experiment 2). Importantly, we provided direct evidence
that the improved performance was caused by the physical manip-
ulation of the material apparatus, and not by the final, static,

material presentation of the cards layout (Experiment 5). A sec-
ondary hypothesis was that the positive effect of an increased
manipulability of the task information would be moderated by
individual differences in numeracy skills. This was not confirmed
by our results. Although numeracy was a significant predictor of
Bayesian performance, it did not moderate the effect of the in-
creased manipulability of the task on performance.

The generalizability and the reliability of the effect of increasing
manipulability on performance was apparent in Experiment 4,
where high levels of performance were observed even in the
absence of a perfect match between the statistical data in the
problem statement and the number of cards in the deck provided to

Table 12
Item Composition of the Flow Scale

Items

Engagement
Were you able to concentrate well on the task?
Did you find the task interesting?
Did you enjoy what you were doing?

Challenge
Did you feel challenged by the task? (R)

Skill
Did you feel skilful while working on the task?

Attention
Did you feel focused while working on the task?
Did you feel distracted while working on the task? (R)

State of mind
Did you feel relaxed while working on the task?
Did you feel anxious while working on the task? (R)

Note. R � reverse coded.

Table 13
Means, Standard Deviations, and Intercorrelations for
Numeracy and Bayesian Performance Variables in Experiment 5

Variable M SD 1 2

Predictors
1. Interactivity (�1 � absent, 1 � present) —
2. Numeracy 8.40 2.09 .00 —

Outcomes
3. Mean Bayesian performance (Y0) 0.64 0.35 .36� .45��

Note. Y0 �
1

3�1

3

yi; Y1 � y3 � y1, where yi is the performance on trial i.
� p � .05. �� p � .01.

Figure 7. Illustration of the A3 laminated sheet presented to participants in the “hands still” condition
(interactivity absent, glasses problem). See the online article for the color version of this figure.
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participants, and even when the cards presented information about
data and hypothesis side by side on one front rather than on two
opposite sides. Experiment 3 demonstrated that the explicit men-
tion of all probabilities in a traditional pen-and-pencil Bayesian
task had no significant impact on participants’ performance. More-
over, the systematic analysis of the videographic evidence in
Experiment 4 showed that successful performance was under-
pinned by an active manipulation of the cards leading to a change
in the presentation layout whereas unsuccessful performance was
characterized by a lesser degree of manipulation and an increase in
marking behavior such as touching or holding cards without mov-
ing them. Taken together, these results support the view that the
physical actions afforded by the use of cards to present the prob-
lem information (rather the explicit description of all elements in
the sample space) promotes correct statistical reasoning.

Systemic Thinking: A Dual-Flow Model of Cognition

Whereas the positive impact of higher levels of information
manipulability on performance could be anticipated from the dis-

tributed cognition perspective, the causal pathways through which
manipulability actually lead to an increase in performance remains
only loosely accounted for. Figure 8 provides an illustration of the
classical information-processing model adapted from Baddeley’s
(2012) working memory model. This model artificially sequesters
cognition in a series of singular input-processing-output events and
provides a rather idealistic view of human cognition as a planned
information processing route: we see, we think, we act. From this
perspective, errors of performance are assumed to arise from a
breakdown in this mental subroutine and are attributed to a faulty
mental representation, a shortage of individual knowledge, cogni-
tive resources, or motivation (e.g., Darlow & Sloman, 2010; Kah-
neman, 2003).

This procrustean model of cognition cannot account for the
results we report in the present study, which suggest instead that
thinking can be shaped by action: we see, we act, we think. For
example, motor actions enhance memory (Cook, Yip, & Goldin-
Meadow, 2010), mental arithmetic (Carlson et al., 2007; Vallée-
Tourangeau, 2013), and insight (Vallée-Tourangeau, in press).
Thinking, reasoning, and deciding, we contend, would be better
modeled by a dual-flow model of processing, where cognition
arises from one of two distinct processing pathways: A deductive
loop where the next action, response, or behavior is deduced from
the cognitive processing of a mental representation and an induc-
tive loop where the next action, response, or behavior is induced
from the affordances offered by the immediate environment Figure
9 illustrates this alternative processing model, which we call the
Systemic Thinking Model (SysTM).

Thus, when cognition flows through the deductive processing
loop, the perception of a stimulus (e.g., the printed text of a
Bayesian reasoning task) contributes to the shaping of a mental
representation (e.g., a sample space), which is processed internally,
inside the head. The stimulus shapes the representation and dif-

Table 14
Regression Analysis Summary for Interactivity and Numeracy
Predicting Bayesian Performance in Experiment 5

Variable B 95% CI � t p

Outcome: Mean Bayesian
performance (Y0)

Overall 0.64 [0.55, 0.74] — 13.77 <.001
Interactivity 0.13 [0.03, 0.22] 0.37 2.73 <.010
Numeracy 0.08 [0.03, 0.13] 0.48 3.44 .002
Interactivity � Numeracy 0.02 [�0.03, 0.07] 0.12 0.88 .384

Note. R2 for Y0 � .35; CI � confidence interval for B.

Figure 8. Schematic representation of the classical information-processing model (adapted from Baddeley,
2012).
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ferent representations may afford different processing. For exam-
ple, a Bayesian task presenting information using single-event
probability statements may be represented as a sample space
including multiple sets and different representations may afford
different cognitive algorithms (e.g., see Villejoubert & Mandel,
2002, Figure 1, p. 173). Conversely, a Bayesian task presenting
information using natural frequency statements, for example, may
shape a nested set representation, which in turn will afford the
application of cognitive operations that will result in the produc-
tion of a normative answer (Gigerenzer & Hoffrage, 1995; Sirota
et al., 2015; Sloman et al., 2003).

But cognition does not need to always arise from such a deduc-
tive processing loop. In other instances, the material presentation
of a stimulus may elicit the direct perception of an affordance (i.e.,
an action possibility) and give rise to the physical processing of the
material presentation controlled by a motor executive (as opposed
to a central executive, which orchestrates cognitive processing).
As Figure 9 illustrates, such an inductive loop involves the pro-
cedural long-term memory storage as well as an “affordance pool”
(allowing the direct perception of action possibilities), which sits
alongside the visuospatial sketchpad and the phonological loop of
Baddeley’s working memory model. In other words, a stimulus
may serves as an online guide for action, and as such, does not
require its mental recognition and classification (Baber et al.,
2014; Gibson, 1979/1986; Greeno, 1994; Norman, 2002; Witha-
gen & Chemero, 2012). For instance, a pack of cards affords
epistemic actions (e.g., sampling through a pack of cards, see
Table 10) that do not require mental representations or purposeful
cognitive planning to take place. Not all actions need to result from
an a priori mental plan, they can arise as people “follow materials”
(Ingold, 2010) in a spatiotemporal trajectory where thinking is

shaped by the intertwining of people’s internal resources and the
external artifacts at their disposal (Vallée-Tourangeau & Vallée-
Tourangeau, 2014). While engaged in such an inductive process-
ing loop, the reasoner’s activity is not dictated by a mental repre-
sentation of the task; instead it forms the cognitive substrate from
which the mental representation can emerge. While they take
place, actions that arise directly from perceptual affordances may
shape cognitive processing of the information sampled without the
need for an intermediate mental representation as people process
information through their actions (e.g., by restructuring the layout
of cards). When cognition flows through such an inductive loop,
what people do informs what they think, as illustrated by the
behavioral results observed in Experiment 4: Participants who
actively rearranged the cards were also more likely to correctly
solve the problems.

Whereas the classical information processing model incorporate
the bidirectional nature of information flow (with a top-down flow
from memory storage to perception and a bottom-up flow from
stimulus to perception), the concepts of inductive and deductive
processing loops are unique to SysTM. In addition, the systemic
thinking model implies that thinking and reasoning may not al-
ways follow a unique linear path that is either deductive (percep-
tion ¡ mental representation ¡ cognitive processing ¡ physical
processing) or inductive (perception ¡ physical processing) but
may also loop locally during thinking. For example, a particular
card layout may give rise to an epistemic action that leads to a
reconfiguration of the layout, and this new configuration may itself
make a new affordance salient (perception^ physical processing)
or inform cognitive processing (perception ^ cognitive process-
ing). This example illustrates how manipulable physical appara-
tuses that allow participants to engage in epistemic and restructur-

Figure 9. Schematic representation of the Systemic Thinking Model (SysTM).
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ing actions may augment and transform their capacity to process
the task at hand through a dynamic spatiotemporal trajectory (see
also Vallée-Tourangeau & Vallée-Tourangeau, 2014).

Implications and Future Research

Bayesian reasoning. The SysTM has important theoretical
implications for the study of Bayesian reasoning in particular, and
our conception of human cognition in general. As far as Bayesian
reasoning is concerned, neither the ecological rationality account
nor the nested-set account can explain the findings reported here
because both these accounts are informed by the same basic
assumption: namely that cognition emerges from information pro-
cessing that is carried out inside the head, on an initial mental
representation which mirrors a static perceptual input. In other
words, these two accounts, akin to most mainstream cognitivist
accounts, presuppose that the main function of people’s neural
activity is to process information, and that, to realize this function,
the nervous system begins by mimicking the properties of the
environment in the form of more or less accurate mental construc-
tions. These accounts disagree on the properties of the mental
representations needed to enable effective cognitive processing.
The ecological-rationality account argues that the mental represen-
tation must include individuated objects with a natural-sampling
structure because cognitive processing is constrained by evolution-
ary designed frequency-coding mechanisms (e.g., Brase, 2002;
Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995). The
nested-set account argues that the natural-sampling structure con-
straint is too stringent: any mental representation that highlights
the nested-set structure of the task information will afford success-
ful cognitive processing and the production of a Bayesian response
(e.g., Girotto & Gonzalez, 2001; Sirota et al., 2015; Sloman et al.,
2003). But neither account anticipates the causal role of physical
action on cognitive processing evidenced in the series of experi-
ments we report here.

Natural frequency formats and nested set relationships play an
undeniable part in facilitating Bayesian reasoning but only a sys-
temic perspective can ultimately enable a comprehensive under-
standing of how environments can be better designed to foster
accurate statistical reasoning. Our experiments show that enabling
physical actions promoted performance beyond and above infor-
mation format; this highlights the need to transcend debates about
how the mind may best represent the world (as in current debates
between proponents of the nested-set and the ecological-rationality
accounts; see, e.g., Barbey & Sloman, 2007) and instead focus on
gaining a better understanding how the properties of the mind, the
body, and the environment complement each other to produce the
results observed (Vallée-Tourangeau & Vallée-Tourangeau,
2014).Admittedly, approaching the study of cognition through the
lens of the classical information-processing model does not nec-
essarily entails a commitment to “methodological solipsism”
(Fodor, 1980) where mental processing is conceived in isolation
from the physical world within which it takes place. The impact of
the environment on internal representations and mental processing
has long been featured in classical information-processing models.
The ecological rationality approach to cognition indeed argues that
we need to understand how the mind exploits its environment to
understand its cognitive machinery (Brighton & Todd, 2009).
These accounts, however, remain subordinate to a dualist concep-

tion of the mind and the environment. Cognition classically con-
ceived may be assumed to have evolved its computational mech-
anisms in symbiosis with nature, but it remains viewed as
emerging from a “self-actional” brain, which ultimately represents
and computes information “offline,” through a somewhat linear
succession of mental states and mental processes. That people are
able to think and solve problems “offline” (e.g., see Clark, 2010;
Wilson, 2002) does not necessarily imply that this is how they all
think typically or that this is how they all think best. In other
words, the classical information-processing model stands as a
blinker for the constitutive role of physical actions in the genesis
of cognition, which is, in turn, traditionally studied in ecosystems
that severely limits opportunities to act upon the information to be
processed—that is, experimental procedures wherein interactivity
is reduced or eliminated.

The SysTM does not merely seek to fuse the nature of the
environmental input or the top-down and bottom-up nature of
information flow in such an “offline” information-processing
model. It calls, instead, for a renewed conception of higher cog-
nition that incorporates the succession of events taking place
online, not only inside a cognizing agent’s brain, but also outside,
in the form of physical actions performed in her immediate envi-
ronment. This presupposes that optimal results (e.g., producing a
Bayesian inference) are unlikely to be a function of the quality of
the reproduction of the environment characteristics in a represen-
tation or a model; instead they are a function of the degree of fit
between (a) the cognitive processes and abilities possessed by a
given individual, (b) the physical actions that are enacted by the
body, and (c) the affordances of the environment (e.g., see Ander-
son, 2014; Järvilehto, 1998).

Implications for the study of thinking and reasoning. The
role of affordances and inductive cognitive pathways on thinking,
reasoning, and decision-making is ubiquitous. Material artifacts
such as cards, paper-and-pencil, and other tools form a constitutive
part of individuals’ ability to think and yet their role often goes
unnoticed. For example, our results suggest that, in all likelihood,
interactivity with the task material in Cosmides and Tooby’s
(1996) “active pictorial task” contributed to the record 92% suc-
cess rate they observed because participants were instructed to
circle parts of the visual representation of frequencies to represent
base rates and false-alarm rates in the written task statement before
providing an answer. But the scaffolding role of artifacts in think-
ing extends beyond Bayesian reasoning. M. Oaksford (personal
communication, January 4, 2012) noted that data selection behav-
ior in a hypothesis-testing task was better aligned with the predic-
tions of the Optimal Data Selection Model (Oaksford & Chater,
1994) when the procedure involved differently sized stacks of
cards to reflect varying probability manipulations (see Oaksford,
Chater, & Grainger, 1999, Experiment 4; Oaksford, Chater,
Grainger, & Larkin, 1997; Oaksford & Moussakowski, 2004,
Experiment 2; Oaksford & Wakefield, 2003). In other words,
providing individuals with material artifacts can enhance their
hypothesis testing performance. In like vein, in a recent article
examining the different cognitive processes that underpin insight
in problem-solving, Fleck and Weisberg (2013) reported data from
five test problems, three of which made use of manipulable appa-
ratuses while the remaining two did not. They remarked that
restructuring, defined as a change in a reasoner’s representation of
the problem, occurred more often in some problems than others.
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What the authors failed to notice, however, was that restructuring
and ultimately insight were associated with interactivity: partici-
pants were more likely to engage in restructuring when the mate-
rial presentation of the task afforded physical processing (see also
Steffensen, Vallée-Tourangeau, & Vallée-Tourangeau, 2015;
Vallée-Tourangeau, in press; Weller et al., 2011).

The SysTM offers substantial heuristic value for guiding future
research as it serves as a springboard for testing the situated
parameters that may affect the relative importance of the deductive
or inductive pathways in thinking and decision-making. These
situated parameters could reflect the characteristics of the reasoner
(e.g., does higher working memory capacity or domain relevant
expertise moderate the effect of interactivity on performance?), the
situation (e.g., does cognitive load and task difficulty encourage or
discourage physical processing?), and the environment (e.g., what
affordances promote or hinder optimal reasoning?).

Conclusions

When the task material affords the restructuration of the prob-
lem data in the world, rather than in the head, performance leaps
up. This is both unsurprising and far-reaching. It is unsurprising
because, as cognitive psychologists, we “know” that props can
support cognitive activities. Teachers use props to support math-
ematical thinking in young children (e.g., Martignon & Krauss,
2009). Neuropsychologists use props to assess memory in the
elderly (e.g., Anderson-Hanley, Miele, & Dunnam, 2013). Re-
searchers, educators, and rehabilitators conceive props as an aid to
those who have not yet fully developed or have lost some of their
cognitive potential. In that respect, the potential of the SysTM
perspective goes beyond the main result that performance im-
proves with props. What our findings show is that performance
improves with interactivity; that is, when a participant’s nascent
Bayesian solution develops through the dynamic coupling with a
malleable physical presentation of the problem. Thus, the SysTM
does not simply make predictions about the effect of making
situations more concrete, the presence or absence of props, or
indeed about the importance of the environment in the classically
mapped interaction between so-called top-down and bottom-up
processes. Instead, it highlights the need to account for how a
problem’s solution emerges through the “interweaving” of physi-
cal processing and cognitive processing. This perspective casts
aside the ontological debate sparked by the extended mind hypoth-
esis (e.g., Clark & Chalmers, 1998) by affirming that the important
issue is no longer where cognitive processing begins and where it
ends, but rather how cognition emerges from the interactions of
brain activity, motor actions, and artifacts (see also Vallée-
Tourangeau & Vallée-Tourangeau, 2014).

Most cognitive psychologists have long assumed healthy adults
ought to be able to manipulate ideas in their head. Piaget’s (1928)
proposition that once individuals have reached the formal opera-
tional stage they no longer depend on concrete manipulations in
thinking, remains by and large unchallenged. The present research,
by contrast, shows that the complex reasoning of healthy adults
can also be transformed by having the opportunity to manipulate
physical constituents of the problems encountered. In that sense,
our findings are far-reaching: They call us to consider the possi-
bility that the error was not only Descartes’; it might have been
Piaget’s also.
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Appendix

The 11 Items in the French Numeracy Scale Adapted From Lipkus, Samsa, and Rimer (2001) With the
Percentage of Participants Who Responded Correctly to Each Item in Experiments 1 and 2, as Well as in Peters

et al. (2006, Study 1) and in Lipkus et al. (2001)

Item

% correct

Exp. 1
(n � 90)

Exp. 2
(n � 90)

Peters et al.
(n � 100)

Lipkus et al.
(n � 463)

1. Imaginez qu’on lance 1 000 fois un dé non truqué à six faces. Sur les 1 000 lancers,
combien de fois pensez-vous que le dé affichera un chiffre pair (2, 4, ou 6) ? [Imagine
that we rolled 1,000 times a fair, six-sided, die. Out of 1,000 rolls, how many times do
you think the die would come up even (2, 4, or 6)?] Answer: 500 out of 1,000. 58% 59% 61% 55%

2. Dans la grande loterie de la Compagnie des Jeux, les chances de gagner un prix de
10 000 € sont de 1%. Si 1000 personnes achetaient chacune un ticket unique à la
Compagnie des Jeux, quelle serait votre meilleure estimation du nombre de personnes
gagnant un prix de 10 000 €? [In the big lottery of the Games Company, the chance
of winning a €10,000 prize is 1%. If 1,000 people each by a single ticket to the Games
Company, what would be your best estimate of the number of people winning a
€10,000 prize?] Answer: 10 out of 1,000. 65% 74% 69% 60%

3. Dans un Grand Jeu Concours d’une galerie commerciale, les chances de gagner une
voiture sont de 1 sur 1 000. Quel est le pourcentage de tickets du Grand Jeu Concours
qui gagnent une voiture ? [In a Mall’s Big Competition, the chance of winning a car is
1 in 1,000. What percent of tickets to the Big Competition win a car ?] Answer: 0.1%. 63% 65% 46% 21%

4. Lequel des chiffres suivants représente le plus gros risque de contracter une maladie:
1 sur 100, 1 sur 1 000, 1 sur 10 ? [Which of the following numbers represents the
biggest risk of getting a disease? 1 in 100, 1 in 1,000, 1 in 10.] Answer: 1 in 10. 96% 96% 96% 78%

5. Lequel des chiffres suivants représente le plus gros risque de contracter une maladie:
1%, 10%, 5% ? [Which of the following numbers represents the biggest risk of getting
a disease?] Answer: 10%. 96% 94% 94% 84%

6. Si les risques de contracter une maladie pour une Personne A sont de 1% en dix ans
et que les risques pour une Personne B sont le double de ceux de la Personne A, quels
sont les risques pour la Personne B ? [If Person A’s risk of getting a disease is 1% in
ten years, and person B’s risk is double that of A’s, what is B’s risk?] Answer: 2%. 83% 87% 83% 91%

7. Si les risques de contracter une maladie pour une Personne A sont de 1 sur 100 en
dix ans et que les risques pour une Personne B sont le double de ceux pour la
Personne A, quels sont les risques pour la Personne B ? [If Person A’s chance of
getting a disease is 1 in 100 in 10 years, and person B’s risk is double that of A’s,
what is B’s risk?] Answer: 2 in 100. 85% 89% 74% 87%

8A. Si les chances de contracter une maladie sont de 10%, sur 100 personnes, combien de
personnes sont supposées contracter la maladie ? [If the chance of getting a disease is
10%, out of 100 people, how many would be expected to get the disease?] Answer:
10. 96% 96% 90% 81%

8B. Si les chances de contracter une maladie sont de 10%, sur 1 000 personnes, combien
de personnes sont supposées contracter la maladie ? [If the chance of getting a
disease is 10%, out of 1,000 people, how many would be expected toget the disease?]
Answer: 100. 75% 81% 84% 78%

9. Si les chances de contracter une maladie sont de 20 sur 100, ceci équivaudrait à avoir
____% chances de contracter cette maladie. [If the chance of getting a disease is 20
out of 100, this would be the same as having a ____% chance of getting the disease.]
Answer: 20. 94% 94% 84% 70%

10. Les chances de contracter une infection virale sont de .0005. Sur 10 000 personnes,
combien sont supposées contracter la maladie ? [The chance of getting a viral
infection is .0005. Out of 10,000 people, about how many of them are expected to get
infected?] Answer: 5. 52% 70% 56% 49%
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