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With the goal to determine the cognitive architecture that underlies flexible changes of control settings,
we assessed within-trial and across-trial dynamics of attentional selection by tracking of eye movements
in the context of a cued task-switching paradigm. Within-trial dynamics revealed a switch-induced,
discrete delay in onset of task-congruent fixations, a result that is consistent with a higher level
configuration process. Next, we derived predictions about the trial-to-trial dynamic coupling of control
settings from competing models, assuming that control is achieved either through task-level competition
or through higher level configuration processes. Empirical coupling dynamics between trial n�1 eye
movements and trial n response times—estimated through mixed linear modeling—revealed a pattern
that was consistent with the higher level configuration model. The results indicate that a combination of
eye movement data and mixed modeling methods can yield new constraints on models of flexible control.
This general approach can be useful in any domain in which theoretical progress depends on high-
resolution information about dynamic relationships within individuals.
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Is flexible, goal-directed action implemented in a hierarchical
manner and through higher level configuration processes? Or is it
achieved through local competition between representations re-
lated and unrelated to the current goal? This long-standing issue in
cognitive psychology (e.g., Botvinick & Plaut, 2004; Cooper &
Shallice, 2006) is relevant for questions such as how to character-
ize developmental (Bunge & Zelazo, 2006) and disease-induced
changes in cognitive control (Waltz et al., 2004), or for how to
establish correspondence between behavioral and neural-level data
on the neurocognitive architecture of cognition (Sporns, Chialvo,
Kaiser, & Hilgetag, 2004). In the present work, we approach this
topic by drawing on three different literatures: (a) research on task
switching in which the question about the nature of the control
architecture has recently come to the forefront (e.g., Gilbert &
Shallice, 2002; Schneider & Logan, 2005); (b) Research that has
established eye tracking as a tool for characterizing allocation of
attention in a fine-grained manner (Theeuwes, 2010); (c), recent
developments in statistics—mixed, linear modeling—that allow
characterizing the dynamics of control within individual subjects
(e.g., Bates, Maechler, & Dai, 2008; Gelman & Hill, 2007; Kliegl,
Masson, & Richter, 2010).

In the next section, we present how the task-switching paradigm
and eye tracking can be combined to assess control dynamics in a

fine-grained manner (see the Task Switching and Eye Movements
section). Then, we introduce the hierarchical configuration model
and two different variants of “nonhierarchical” models (see the
Models of Task Selection section). We explain how these models
can be tested by looking at the dynamics of task selection within
trials (see the Within-Trial Control Dynamics section) and by
examining the dynamic coupling of control settings across trials,
using mixed, linear modeling techniques (see the Between-Trial
Dynamic Coupling of Control Settings section). In the first part of
the Results section, we demonstrate how within-trial dynamics of
eye movements provide initial evidence in support of the config-
uration model (see the Results: Within-Trial Dynamics section). In
the second part of the Results section, we show that the analysis
of trial-to-trial dynamics provides additional, independent infor-
mation that largely supports the configuration model (see the
Results: Trial-to-Trial Coupling Dynamics section).

Task Switching and Eye Movements

The task-switching paradigm has become an important tool for
tackling the question of how people achieve flexible control over
cognitive operations (Logan, 2003; Meiran, 1996; Monsell, 2003).
Subjects work with two or more response time tasks (e.g., judging
the color or the shape of an object). Either an external cue or a
sequential rule specifies which task is relevant on a given trial. The
response time (RT) difference between trials after a task switch
and after a task repeat, the switch cost, is used to capture the
demands of changing task sets between successive trials. Switch
costs can be substantial (i.e., 150–300 ms) when there is little time
to prepare and are reduced when time for preparation is provided.
However, proactive control rarely eliminates switch costs com-
pletely, even when people have ample opportunity to prepare.

There are important theoretical differences between competing
models of task switching, some of which we turn to below.
However, all accounts agree that task selection costs directly
reflect interference that arises from currently irrelevant tasks, or
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the processing operations that are necessary to fight this interfer-
ence (or both; see Kiesel et al., 2010; Vandierendonck, Liefooghe,
& Verbruggen, 2010). Therefore, a precise characterization of the
temporal interference/control dynamics is key to the understanding
of flexible task control.

With standard RT measures of task switch performance, we only
obtain a static assessment of interference based on difference
scores between condition averages (e.g., no-switch vs. switch
RTs). In contrast, by tracking eye movements during task switch-
ing, we can trace for a given individual, trial, and even time point
within a trial, whether attention is either on task-relevant or on
task-irrelevant aspects. This should get us much closer to a detailed
assessment of real-time control and interference dynamics.

In order to use eye tracking in a task selection context, we need
to separate task-relevant features across different objects on the
screen rather than combining them within the same object, as it is
typical in task-switching situations. Figure 1 demonstrates key
features of our paradigm. We used two possible tasks, the “color”
and the “gap” task, which were indicated through verbal task cues.
Cues were presented either 300 ms or 1,000 ms prior to the
stimulus to manipulate opportunity for proactive control. On each
trial, three vertical bars were displayed, located equidistantly from
each other on a virtual circle. One of the three bars differed in color
from the rest; it was dark or light blue, whereas the others were
medium blue. A second bar had a gap in it, either at the top or at
the bottom of the bar, whereas the others had no gap. Subjects
were asked to respond either to the color (light blue � left
response, dark blue � right response) or to the gap (bottom gap �
left response, top gap � right response). We refer to the task-
relevant bar as the target and to the other singleton as the distrac-
tor because it is task relevant on other trials. The third bar is never

relevant, and therefore we refer to it as the neutral object. Except
for their distance from fixation and the configuration in an equi-
lateral triangle, object locations were unpredictable. Thus, poten-
tial trial-to-trial effects on eye movements could not be interpreted
in terms of location priming.

To perform either task, �subjects had to (a) attend to the appro-
priate object and (b) apply the relevant S-R rules to that object. We
can capture the first process, task-congruent attention, by looking
at the probabilities of target- and distractor-directed fixations.
Even though there is no complete overlap between eye movements
and attention, fixation information can serve as a reliable indicator
of where attention is directed to in most unconstrained situations
(e.g., Awh, Armstrong, & Moore, 2006). Research on eye move-
ments and attention has established important benchmark results of
how fixations respond to bottom-up signals, to top-down control
attempts, and to global strategic settings (e.g., Dodd, Van der
Stigchel, & Hollingworth, 2009; Findlay, 1997; Van der Stigchel,
Meeter, & Theeuwes, 2006; van Zoest, Donk, & Theeuwes, 2004;
for a different view, see Folk & Remington, 2006). In particular,
within the first 200 � ms after stimulus display, fixations are
attracted to low-level visual features (e.g., singleton objects) in an
unconditional manner, and only thereafter do top-down control
settings begin to take hold (van Zoest et al., 2004; see also
Theeuwes, 2010). Thus, target versus distractor probabilities as a
function of time should allow us to determine a particularly im-
portant time point, namely the onset of task-congruent, top-down
control. As discussed in the next sections, models of task selection
differ in their predictions about how this onset of control is
affected by switches in task sets.

Although eye movements inform about attentional selection,
they do not provide direct information about the second process,

Figure 1. Successive stimulus displays for a single trial. Note that two possible cues could be used per task.
Stimuli are not drawn to scale.
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the selection of relevant S-R rules. This is an important issue that
we return to in the General Discussion (see the Qualifications
section).

Models of Task Selection

Most models of task control are situated within the theoretical
tension between two polar opposites, which we refer to here as
configuration models, on the one hand, and task-level selection
models, on the other. Configuration models assume that a switch in
task necessitates a process (or a set of processes) that operates on
an abstract, hierarchically higher level than that of specific tasks.
Such processes may involve the retrieval of task rules from long-
term memory into working memory (e.g., Logan & Gordon, 2001;
Mayr & Kliegl, 2000, 2003; Monsell & Mizon, 2006) or inhibition
of the no-longer relevant task (e.g., Mayr & Keele, 2000).

The following additional assumptions will be critical here: (a)
At least in part, configuration requires a time-limited control
operation that needs to be completed before task-specific process-
ing can begin (e.g., Meiran, 1996; Rogers & Monsell, 1995). (b) In
principle, configuration can be executed proactively (i.e., prior to
stimulus presentation; Meiran, 1996). (c) However, previous work
also suggests that whether or not, or when exactly (de Jong, 2000),
configuration takes place depends on strategic settings subjects
adopt in response to the global or local selection context. For
example, when overall switch frequency is high, people often tend
to lower their threshold for initiating configuration processes, such
as inhibition of the previous task and updating of working mem-
ory, so that these can occur even on no-switch trials (e.g., Mayr,
2006; Monsell & Mizon, 2006). Thus, although in principle con-
figuration is mandatory on switch trials, it can be—but is not
always—avoided on no-switch trials. (d) A final assumption that
will become critical when we turn to the between-trial dynamic is
that the strength of high-level control is not constant, but rather
fluctuates over time (e.g., West & Travers, 2008).

Does flexible switching between competing tasks actually re-
quire higher level control and reconfiguration? Kiesel et al. (2010)
recently concluded a review of relevant research by stating that it
is not clear whether it is “. . . theoretically necessary to postulate
executive control processes to explain switch costs” (p. 868).
Specifically, configuration models need to earn their credibility
against a category of models that assume a single process for
no-switch and switch transitions and/or a “flat control hierarchy,”
where control is established strictly through task-specific compe-
tition and where trial-to-trial carryover of task-specific represen-
tations is responsible for switch costs. There are two different
models, the compound-cue model by Logan and colleagues
(e.g., Logan & Bundesen, 2003; Schneider & Logan, 2005) and
the connectionist task-level selection model (Gilbert & Shal-
lice, 2002), that have been designed explicitly to function
without higher level, switch-related processes. We focus on
these two models because, albeit different in their explanations,
they represent the strongest theoretical case in favor of “non-
hierarchical” accounts of task switching.

We do not want to ignore here that one way to solve the
theoretical tension between the opposing models is through hybrid
models that include both high-level and low-level selection pro-
cesses (e.g., Brown, Reynolds, & Braver, 2007; O’Reilley, 2006).
However, presently there are no good diagnostics available to

clearly identify either configuration or carryover dynamics in
empirical data. Therefore, predictions from pure models are a good
starting point for developing such diagnostics.

Within-Trial Control Dynamics

One straightforward prediction of a model that assumes an
initial configuration operation is that such an operation would
postpone the onset of task-congruent attention in a relatively
discrete manner on switch trials relative to no-switch trials. Also,
people should be able to initiate configuration proactively, which
implies that the switch-related discrete delay in task-congruent eye
movements ought to disappear when opportunity for preparation is
provided. Furthermore, the delay in onset of task-congruent atten-
tion on switch trials should be dependent on context. Specifically,
if the probability of switches is high, people should be more
inclined to initiate reconfiguration or inhibition even on no-switch
trials (e.g., Mayr, 2006; Monsell & Mizon, 2006). As a result, the
discrete delay in the onset of control should occur for switch and
no-switch trials alike.

Alternative predictions about within-trial control dynamics
can be derived from the above-mentioned compound-cue model
(Logan & Bundesen, 2003; Schneider & Logan, 2005). Accord-
ing to this model, subjects in cued task-switching situations do
not operate with task-specific attentional settings, but rather
with one unified task set that integrates all relevant rules.
Switch costs arise because only on no-switch trials are task cue
representations carried over from the previous-trial cue. In the
standard task-switching paradigm, cues on successive trials are
identical in case of a no-switch transition, thus producing strong
cue-priming effects. However, even when two cues per task are
used to avoid such cue repetitions (e.g., Mayr & Kliegl, 2003),
the two cues associated with the same task are semantically or,
at least episodically, related, thus potentially allowing for some
priming. Once the task cue is encoded, it serves, combined with
the target, as a “compound cue” that disambiguates the correct
response. The compound-cue model further assumes that switch
costs arise from exponential distributions of the time it takes to
finish cue-encoding processes that differ for trials on which
compound cues are similar to those on the preceding trial (i.e.,
no-switch trials) relative to trials on which compound cues
change (switch trials). Because these functions differ only in the
rate at which response-relevant information accumulates (de-
pending on the amount of priming), the model predicts a com-
mon onset for task-congruent attentional processing on switch
and no-switch trials. In other words, the compound-cue model
has no mechanism for explaining a potential discrete delay in
the onset of task-congruent attention on switch trials. Moreover,
given the assumption that task-specific attentional settings play
no role in cued task-switching situations, any finding of switch
effects on task-congruent attention would be problematic for
this model.

In the first part of the Results section, we report data on
within-trial task selection dynamics. Some readers may be mainly
interested in these aspects of the results, which can be adequately
evaluated even when skipping the following section on between-
trial dynamics.
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Between-Trial Dynamic Coupling of Control Settings

As mentioned earlier, fixation information provides an index of
task-relevant selection that can be used in a trial-by-trial manner.
This in turn allows us to characterize trial-by-trial control dynam-
ics as a new source of information to evaluate models of control.
Specifically, we look at how attentional processing on trial n � 1
predicts attentional processing and/or RTs on trial n. Our goal in
the next sections is to derive from each of the two competing types
of models specific predictions about trial-to-trial control dynamics,
to verify these predictions via simple model simulations, and to
establish how best to test these in both simulated and actual data.

Control Dynamics Generated Through Task-Level
Selection Models

Figure 2a is an abstract depiction of the model of task selection
by Gilbert and Shallice (2002) in which attentional control oper-

ates on the level of tasks. On each trial, selection is achieved
through local competition between the cued task and the currently
nonrelevant task. This competition takes place through lateral
inhibition between so-called task demand units, which biases at-
tentional processing and/or response selection. On switch trials,
selection takes longer because the activation level in the task
demand units carries over from one trial to the next (i.e., symbol-
ized through the paths from each task demand unit to itself). This
gives the formerly appropriate, but now inappropriate demand unit
a head start that needs to be overcome before processing of
task-relevant information can begin.

Note, that in this model the only change from trial to trial is the
“task input” (e.g., in form of task cues) that indicates which task is
currently relevant. Otherwise, the network does not have to be
“reconfigured” on switch trials. Thus, task selection effects arise
exclusively from the basic “associative machinery,” plus the as-
sumption that task demand activity carries over across trials. This
model implements the intuitively appealing idea that inertia of
task-specific attentional settings from one trial to the next can
produce important mean-level task-switching phenomena without
requiring assumptions about higher level, task-unspecific control
processes (for details, see Gilbert & Shallice 2002, and the Ap-
pendix).1 However, from this model we can also derive specific
predictions about the trial-to-trial dynamic coupling between suc-
cessive control states. To make these dynamics transparent, we
have rerepresented the model in Figure 3. The way to read these
panels is to think of them as path-analytic regression models,
where trial n�1 variables are used to predict trial n dependent
variables. For now, we focus on the top-left panel of this figure;
the remaining panels are explained below. To arrive at a succinct
representation of the control dynamics, we need to abstract away
from the specific tasks (i.e., color or gap), and, rather, distinguish
between the relevant and the irrelevant tasks for each trial (i.e.,
corresponding to the “task-relevant control” and “task-irrelevant
control” units). Although with simulations (see the Appendix) we
can directly probe activity in the task demand units, in behavioral
data the status of task-specific control settings can be assessed only
via proxies. In Figure 3, the labels “target” and “distractor” rep-
resent these proxies. In our case, they stand for binary predictors
indicating whether or not on that trial an eye movement was made
to the target or distractor. Accordingly, the figure distinguishes
between hypothetical (i.e., dotted lines) and empirically observable
relations (i.e., filled lines). In theory, of course, the observable

1 One might argue that within the Gilbert and Shallice (2002) model, the
“task input” that specifies the currently relevant task can be conceived as
a form of “higher level control.” On the one hand, we agree that in
principle, the task inputs could serve this function. For example, if one
wanted to augment this model through a task-unspecific level of control
(i.e., without changing its current task-specific selection mechanism), the
best way to do this would be by explicitly specifying how the task input is
computed. On the other hand, in the original model the task input contrib-
utes nothing to the explanation of task switch costs or trial-to-trial dynam-
ics (e.g., it is identical for switch vs. no-switch trials). Switch costs arise
from the task selection dynamics that take place within the “associative
machinery” once all stimulus and task input parameters are provided. Thus,
although one could in principle conceive this model as containing a
“higher,” task-unspecific level of selection, this level has no functional
relevance for what we try to explain here.

Figure 2. Schematic representation of (a) the task-level selection model
(Gilbert & Shallice, 2002) and (b) the higher level configuration model.
Arrows indicate positive relationships; oval line endings indicate negative
(i.e., inhibitory) relationships. Arrows that return to a unit represent car-
ryover of activity across trials. Red and green arrows denote relationships
that need to change on switch trials.
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relations are constrained by the status of the hypothetical variables
and the relations between them.

So how should the trial-to-trial coupling dynamics play out? For
no-switch trials, the task control unit relevant on trial n�1 is the
same as on trial n. Thus, whatever the activity level on trial n�1
might be, it will carry over into trial n (expressed through the
excitatory links between corresponding task demand units across
trials in top-left panel of Figure 3). This in turn implies a positive
correlation for the “horizontal relationships” between trial n�1
and trial n eye movements (i.e., n�1 relevant –� n relevant and
n�1 irrelevant –� n irrelevant). Furthermore, the mutual inhibi-
tion on the level of task demand units will enforce that the
“diagonal relations” (i.e., n�1 irrelevant –� n relevant, and n�1
irrelevant –� n relevant) are negative. In other words, for no-
switch trials, the efficiency of the control setting on trial n�1 will
be generally positively related to the efficiency of the control
setting on trial n. In contrast, on switch trials, the specific task that
was relevant on trial n�1 becomes irrelevant on trial n, and vice
versa. In Figure 3, this is expressed through the horizontal inhib-
itory links between trial n�1 and trial n task control units for

switch trials. On the level of observable relationships, this implies
the opposite pattern than for no-switch trials, namely negative
“horizontal” and positive “diagonal” relations between trial n�1
and trial n eye movement indicators of attentional efficiency.

To confirm these predictions, we adapted a version of the
Gilbert and Shallice (2002) model to our experimental situation
(see correlation coefficients in top-left panel of Figure 3 and the
Appendix for modeling details). Modeling results show that the
horizontal relationships (i.e., n�1 target –� n target, n�1 distrac-
tor –� n distractor) are positive on no-switch trials, whereas the
diagonal relationships are negative (i.e., n�1 target –� n distractor
or n�1 distractor –� n target). However, on switch trials, we see
exactly the opposite pattern. For example, the correlation between
the trial n�1 target and the trial n target flips from .41 for
no-switch trials to �.16 for switch trials. Equally, attention to the
trial n�1 target predicts faster trial n RTs (i.e., �.09) on no-switch
trials, but slower RTs on switch trials (i.e., �.11), whereas the
reverse relationship holds for the relationship between trial n�1
distractors and trial n RTs (i.e., .09 vs. �.11). Combined, the
simulation results illustrate the basic prediction of the carryover

Figure 3. Representation of the task-level selection model (left two panels) and the higher level configuration
model (right two panels), along with two complementary analyses of trial-to-trial control dynamics: categorizing
trial n�1 eye movements in terms of relevance (top panels) and categorizing trial n�1 eye-movements relative
to the “prospective” relevance on trial n (bottom panels). Dotted lines represent hypothetical and filled lines
represent observable relationships. Lines, symbols, or coefficients in green are relevant for no-switch transitions,
those in red for switch transitions, and gray lines are assumed to be invariant across no-switch and switch
transitions. Target and distractor refer to indicators of attention (e.g., eye movements) to the target or distractor
object on that trial (or to prospective targets/distractors in bottom panels). To avoid overcrowding of the figure,
we omitted inhibitory links between the relevant task control and distractors and between irrelevant task control
and targets in the top and bottom left panels. Coefficients and dependent variables associated with the same
model are contained in boxes with the same color (Model 1: orange; Model 2: brown; Model 3: blue). Numbers
in boxes are correlation coefficients and show the results from a simulation of the Gilbert and Shallice (2002)
task-level selection model (left panels) and the configuration model (right panel). RT � response time.
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model for trial-to-trial control dynamics: The more efficient the
trial n�1 attentional setting, the more efficient the setting is on
trial n in case of a no-switch transition, but the less efficient it is
following a switch transition.

Control Dynamics Generated Through Higher Level
Configuration

In Figure 2b, we changed the task-level model into a hierarchi-
cal control model. To this end, we replaced the direct competition
between task demand units by a task-unspecific, general control
unit that can selectively activate or deactivate the task-specific
demand units, depending on which task is currently relevant. Thus,
whereas in the task-specific model the “associative wiring pattern”
remains constant across no-switch and switch trials, in the config-
uration model the wiring pattern itself needs to be changed on
switch trials (represented by the green and red arrows in Fig-
ure 2b). To account for the waxing and waning of control over time
(e.g., West & Travers, 2008), activity in the higher level unit
carries over between trials (again symbolized by the paths from the
high-level control unit to itself in Figure 2b; see the Appendix).
Thus, whereas in the task-level selection model control settings
carry over in a task-specific manner, in the hierarchical control
model, carryover occurs on the level of a higher level control
resource that fuels the task-specific selection processes.

The purpose of the model shown in Figure 2b is to propose an
operational definition of the minimal difference between the task-
unspecific and the task-specific control model and to show how
from this difference specific dynamic coupling patterns may arise.
However, we acknowledge that this abstract model representation
ignores the hard problem of specifying the mechanism for flexibly
“rewiring” the links between the task-unspecific control unit and
the task demand units, a problem that does not exist in the Gilbert
and Shallice (2002) model. Thus, going from the task-specific to
the task-unspecific control model clearly comes with a loss in
parsimony. The more important it is to examine whether with this
change come unique predictions and greater explanatory power.

In fact, the configuration model makes different predictions
about the trial-to-trial coupling pattern than the task-specific con-
trol model. The reason is that the trial-to-trial variations of control
efficiency are generated “above” the level of specific tasks and
therefore do not depend on whether or not tasks change across
trials. Thus, the efficiency of control on trial n�1 should be
positively coupled with efficiency of control on trial n, no matter
whether there is a switch between successive trials. In the top-right
panel of Figure 3, this is demonstrated by the fact that the hori-
zontal links between trial n�1 and trial n relevant and irrelevant
task control units are excitatory for no-switch and switch trials
alike. Accordingly, on the level of indicators of attentional settings
(i.e., eye movements to targets or distractors), the model predicts
identical trial-to-trial relations for no-switch and switch trials. In
fact, simulations with our implementation of the general control
model confirm this prediction (see the Appendix for details).
Obviously, this pattern contrasts with the switch-dependent flip in
coefficients that is produced by the task-specific control model
(see top-left panel in Figure 3).

A problem with testing the configuration model in this manner
is that it predicts no differences in relationships for no-switch
versus switch trials and is thus based on confirmation of the null

hypothesis. Therefore, we also use the alternative specification,
shown in the bottom-right panel of Figure 3, which allows a
falsification test of the configuration model. The specifications
differs in how exactly trial n�1 eye movements are used to predict
eye movements and RTs on trial n. Whereas the specification in
both top panels of Figure 3 categorizes eye movements in terms of
task relevance for trial n�1 (i.e., target vs. distactor on trial n�1),
this new specification categorizes trial n�1 eye movements in
terms of their relationship to what is target and what is distractor
on trial n. To be specific: Assume gap is the target and color the
distractor on trial n. In this case, we refer to gap as the “prospective
target” and color as the “prospective distractor” on trial n�1. Let
us now further assume attention is directed to the gap dimension
on trial n�1, which would be an indication of an efficient, goal-
directed control setting. If trial n is a no-switch trial, the carryover
of general control activity ensures perseveration of the tendency to
attend to the gap dimension into the next trial, just as the carryover
of the control activity does in the task-level control model (in fact,
both specifications make qualitatively identical predictions for
no-switch trials). However, if there is a switch between trial n�1
and trial n, the carryover of an efficient, general control setting
from trial n�1 biases the system toward a similarly efficient, but
now reconfigured setting that favors attending the (previously
ignored) color and ignoring the (previously attended) gap dimen-
sion. In the figure, the reconfiguration between trials that needs to
happen on switch trials is indicated through the different links (red
vs. green) for no-switch and switch trials between the general
control unit and trial n�1 prospective target/distractor. Due to this
reconfiguration, the positive relationship between the prospective
target and the trial n target is eliminated or even turns negative for
switch trials; the same is true for the relationship between the
prospective distractor and the trial n distractor. Thus, with this
specification, we explicitly test the prediction that an attentional
setting is not carried over for switch trials. Instead it is counter-
acted by a configuration operation that is fueled by general, task-
unspecific control activity and that waxes and wanes across trials.
It would be particularly interesting if we find switch-trial coeffi-
cients that are not only reduced, but opposite in sign to those on
no-switch trials. Such a pattern would indicate that inhibition is
used during a task switch to counter previous-trial influences.

In the bottom-right panel of Figure 3, we included results from
a simulation using the configuration model (see Figure 2b and the
Appendix) with the prospective target/distractor specification. The
coefficients show both the predicted carryover pattern for no-
switch trials and its reversal for switch trials. For example, for RTs
as the dependent variable, trial n RT decreased as attention to the
prospective target increased (i.e., �.12), whereas for switch trials
the reverse relationship emerged: Eye movements to the prospec-
tive target lead to slower RTs on the following trial (i.e., �.09).

A noteworthy feature of the way we specified the configuration
model is that although the currently relevant task receives positive
activation, the currently irrelevant task set is actively suppressed.
To examine how between-trial coupling dynamics are affected by
such active suppression, we tested an activation-only variant of the
model shown in the bottom-right panel in Figure 3. The currently
irrelevant task was simply allowed to decay to baseline between
trials. In this case, the influences from the trial n�1 prospective
target were qualitatively similar to those shown in Figure 3
(bottom-right panel) on no-switch trials. In contrast, on switch
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trials rather than flipping in sign, the corresponding relationships
reverted to zero. The opposite pattern emerged for prospective
distactors. On no-switch trials, they had no influence on trial n
processing. However, on switch trials, where the prospective dis-
tractor corresponds to the trial n�1 target, the relationships were
qualitatively similar to those shown in the bottom-right panel of
Figure 3. Thus, an empirical pattern that contains an actual flip in
signs (i.e., with significant coefficients in either direction) would
be consistent with a configuration process that uses active inhibi-
tion of the irrelevant task.

For sake of completeness, the specification in terms of trial n�1
prospective targets/distractors can also be applied to the task-level
selection model (see bottom-left panel of Figure 3). The task-level
model predicts here that whatever dimension is attended on trial
n�1 will also be attended with greater than chance likelihood on
trial n, no matter whether there is a switch between trials or not.
Accordingly, the absence of switch effects on coefficients (see
Figure 3, bottom-left panel) can be seen as a confirmation of this
model, albeit a relatively weak confirmation that, analogously to
the situation in the top-right panel of Figure 3, relies on accepting
the null hypothesis.2 Thus, although the appropriate test of the
task-level selection model is through the specification in terms
of task-relevant and task-irrelevant predictors (top-left panel), the
appropriate test of the general control model is through the spec-
ification in terms of prospective targets/distractors (bottom-right
panel).

In Experiment 2, we tested the competing predictions of the
task-level selection and the configuration model. It is important to
keep in mind that the trial-to-trial dynamics relevant for these tests
occur within individuals. Via mixed linear modeling, we can
assess within-individual predictive relationships from trial n�1 to
trial n, while also accounting for between-individual differences in
such relationships (e.g., Bates et al., 2008; Gelman & Hill, 2007;
Kliegl et al., 2010). Therefore, the availability of these tech-
niques—at least within experimental psychology, a relatively re-
cent development—is an essential prerequisite for our model test-
ing approach.

Experiments 1 and 2

In Experiments 1 and 2, we used the paradigm shown in Fig-
ure 1, which are presented together. Each of the two tasks was
cued with two possible labels, such that in alternating trials, only
one set (e.g., “color” and “gap”) or the other set (“hue” and
“space”) was presented. This procedure avoids cue repetitions and
therefore reduces the effects of cue priming (Logan & Bundesen,
2003; Mayr & Kliegl, 2003). Following Monsell and Mizon
(2006), in Experiment 1 we used a 25% switch rate. Arguably, low
switch rates induce subjects to maintain tasks across no-switch
trials so that these can serve as an appropriate baseline for observ-
ing both switch costs and preparation effects.

In addition to a 25% switch rate, Experiment 2 also included
switch rates of 50% and 75%, manipulated between subjects.
Again, this is based on Monsell and Mizon (2006), who had shown
that both switch costs and the preparation effect on switch costs
generally decreased with increasing switch frequency. From the
perspective of configuration models, this pattern can be explained
by assuming that people flexibly adapt their use of configuration
processes according to switch frequency. In particular, as switch

frequency increases, subjects’ threshold for engaging in reconfigu-
ration processes should decrease. As a result, they should be more
likely to initiate reconfiguration in an indiscriminant manner, even
on no-switch trials. This makes the strong prediction that for
high-switch frequencies, a discrete delay in onset of task-
congruent attention is present for no-switch and switch trials alike.
In contrast, the Gilbert and Shallice (2002) model has no process
for explaining such a pattern.

There were a few additional differences between Experiments 1
and 2: In Experiment 1, we used eye movement responses to
measure RTs. This has the disadvantage that at some point during
the production of a response, control of fixation, initially directed
to stimulus acquisition, is grabbed by the response system, which
makes unambiguous interpretation of eye movements as indicators
of attention difficult. So, in Experiment 2 we used standard key-
press responses. In Experiment 2, but not in Experiment 1, we used
incentives to motivate subjects. Finally, only in Experiment 2 did
we use a sample size that was sufficient to use mixed modeling for
the analysis of across-trial relationships between eye movements
or eye movements and RTs.

Method

Subjects. Thirteen students from the University of Oregon
participated in Experiment 1; 72 participated in Experiment 2 in
exchange for course credits.

Tasks, stimuli, and procedure. Stimuli were presented on a
17-in. Dell CRT monitor set to 1024 � 768 resolution. Eye
movements were recorded using the SR Research desk-mounted
Eyelink 1000, controlled by the Eyelink Toolbox (Cornelissen,
Peters, & Palmer, 2002).

On each trial, three vertically oriented bars were presented, each
1.7° high and .34° wide. One bar differed in color from the other
two bars (light blue or dark blue instead of medium blue), a second
bar had a small gap near either the top or the bottom. Depending

2 Although the carryover model does actually produce no switch effects
with the specification in terms of prospective targets/distractors for trial n
RTs as dependent variable, matters are a bit more complex for trial n
targets or distractors as dependent variables. For example, for the relation-
ship between trial n�1 prospective target and trial n target, the simulation
model produced a switch-related reduction of the relationship (i.e., from
.41 to .14). For the paths between n�1 distractor to n distractor for
no-switch and switch trials, we find exactly the opposite trend (from .14 to
.42). Generally, coefficients are more extreme with targets as dependent
variable for no-switch trials and with distactors as dependent variable for
switch trials. Further probing of the task unit activation dynamics in the
model simulation explains why this is the case. The task demand unit
activation values are bound between �1 and � 1 and on no-switch trials
for targets, and on switch trials for distractors, they were closer to the zero
value, which is in the middle of the allowed range. Given the sigmoid
activation function used to convert unit input to activation values, units
with activity in this region are more sensitive to input variations than units
with lower or higher activity levels. Depending on path, the effects of these
activation dynamics can produce patterns that are either consistent with the
carryover model, the configuration model, or neither. In the aggregate,
however, the simulation results are consistent with the predictions of the
carryover model. This becomes apparent when we look at RTs as depen-
dent variable. Here, these “lower-level” influences average out, and the
pattern of switch effects on coefficients is clearly consistent with the
configuration model.
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on the currently relevant task, these bars either served as the target
or the distractor, whereas the third object served as neutral object.
The three bars were presented equally spaced in three of 12
possible positions on a virtual circle (circle radius � 100 pixels or
3.4°; see Figure 1), thus constituting four possible rotations of a
equilateral, virtual triangle. On each trial, stimulus positions were
constrained to fall on the vertices of one of four possible equilat-
eral triangles necessary to capture all 12 possible positions on the
circle. Triangle constellations were never repeated from one trial to
the next, and assignment of target, distractor, or neutral object to
positions within the triangle was random. Thus, there was neither
trial-to-trial predictability nor repetitions of stimulus locations.

Task cues instructed subjects to perform one of two tasks. For
the “gap” task, they made a “left” response when the gap was on
the bottom and a “right” response when the gap was on the top
of the target object. For the “color” task, light blue meant “left”
and dark blue meant “right.” In Experiment 1, subjects responded
by moving their eyes to left or right response regions, which began
412 pixels (13.9°) to the left or the right of the midline of the
screen. Once the eyes moved into a response area, the RT was
recorded, the stimuli disappeared, and the next trial began. Eye
movements were used to record responses, hoping that this would
encourage subjects to fixate potentially relevant objects for solving
the tasks. This is a somewhat unusual aspect of our experimental
setup that may have affected the generalizability of our results.
However, the basic pattern of results was very similar to the one
obtained in Experiment 2, in which we used regular key responses
(i.e., left vs. right arrow keys).

For each trial, the relevant task was signaled by verbal task
labels presented visually at the center of the screen. As explained
above, the cue was selected from pairs (“gap” vs. “color”, “space”
vs. “hue”) to avoid immediate cue repetitions. Tasks were selected
randomly with the constraint that a task switch occurred with a
probability of p � .25 in Experiment 1. For Experiment 2, task
switch probability was either p � .25, p � .50, or p � .75 between
three randomly assigned groups of subjects (n � 24 per group).

The interval between the start of each trial and the stimulus was
1,100 ms. Within that interval, the cue was presented for 200 ms
either after 100 ms, leaving a cue–stimulus interval (CSI) of 1,000
ms, or after 800 ms, leaving a CSI of 300 ms.

Subjects were seated with their eyes approximately 50 cm from
the screen and with their head supported by an adjustable chin rest.
The session began with three 40-trial practice blocks during which
subjects received error feedback. In Experiment 1, these were
followed by 17 test blocks of 40 trials without trialwise error
feedback. In Experiment 2, incentives were used to motivate
subjects to use the preparatory interval. Subjects earned c/1 for each
trial with an RT that was faster than the average across all previous
blocks, as long as accuracy remained at or above 90%. Subjects
were not informed of this incentive scheme until after Block 4 of
the experiment. During Block 4, the overall average RT was
computed separately for no-switch and switch trials, and this
average was updated for each new block. Subjects were instructed
that no-switch and switch transitions were averaged separately in
order to avoid any selective bias for the one or the other. At the end
of each block, subjects were shown how much additional money
they had earned (if any) along with average accuracy and RT
(across no-switch and switch trials), and at the end of the experi-

ment they were paid the amount earned (usually between $3 and
$4). Blocks 5–20 were used for data analysis.

Eye position registration was calibrated at the beginning of the
experiment and recalibrated every four blocks. Each block’s av-
erage eye positions during the presentation of the task cue were
used to correct for possible drifts across the experimental session.

Analysis of Eye Movements

Eye positions were measured at a rate of 1000 Hz. Fixations
were defined as the absence of either a blink or a saccade, where
a saccade was identified for each pair of successive samples for
which the eye’s velocity surpassed 30°/s or the acceleration sur-
passed 8,000°/s.2 Fixations before or after blinks were not ex-
cluded from the data—doing so would not affect the results.
Around each object center, 1.7° (i.e., half the distance between cue
and object) nonoverlapping circles was defined. Fixations within
these circles were categorized as being directed toward that object.
In the present analyses, we focused on the initial 700 ms within a
trial, which are most likely to reflect attentional selection pro-
cesses, rather than later rechecking. In fact, inspection of individ-
ual eye movement probability curves revealed that within these
initial 700 ms, the pattern was relatively consistent across individ-
uals, whereas later probability curves were much more idiosyn-
cratic and varied.3 In part, this simply reflects the fact that given
average RTs of around 800 ms, data density strongly decreased
beyond 700 ms.

Across all conditions, the probability of trials with target, dis-
tractor, and neutral fixations within the first 700 ms of a trial was
.47 (SD � .20), .17 (SD � .10), and .06 (SD � .06), respectively,
for Experiment 1 and .54 (SD � .22), .18 (SD � .11), and .07
(SD � .05) for Experiment 2. These numbers changed only
slightly when looking at the entire trial duration (Experiment 1:
.52, .19, .08; Experiment 2: .61, .22, .10). The fact that target
fixations hovered around 50% might appear surprising at first.
However, this reflects the two opposing criteria we needed to
optimize for in the stimulus display. On the one hand, we needed
to achieve sufficient stimulus-elicited task competition, which
decreases with between-object distance. On the other hand, we
needed to ensure that eye movements to the target versus the
distractor are in fact indicative of the efficiency of attentional
control. We could have easily enforced close to 100% eye move-
ments by moving the objects even further apart. However, this
would have turned the paradigm into a visual search task and
eliminated much of the between-task competition. Obviously, our
hope was that the fixations we did observe are meaningful indi-
cators of attentional selection—overall, our results indicate that
this was in fact the case.

3 As we report in the context of analysis of between-trial dynamics, for
the 0–700 ms phase, the correlation between target-directed fixations and
RTs were negative (see Figure 7), which is consistent with the idea that
these fixations indicate efficient orienting toward task-relevant informa-
tion. However, when analyzing the full trial duration, this relationship
reverses. Likely, this reflects both the effects of rechecking and the fact that
the longer the RT, the greater the opportunity for target-related fixations,
which in turn drives up the correlation between target fixations and RT. It
is because of such complexities that we decided that fixations from the
early trial period provide a more unambiguous reflection of attentional
selection.
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To reduce overall complexity of the present article, the consid-
erable differences in overall fixations found across the two task
dimensions are ignored. The color deviant generally attracted more
eye movements than the gap deviant, both as a target (Experiment
1: .66 vs. .29, Experiment 2: .72 vs. .35) and distractor (Experi-
ment 1: .21 vs. 10, Experiment 2: .24 vs. .11). However, we made
sure that the general pattern of results to be reported below
replicated across both task dimensions. In addition, for the analysis
of across-trial dynamics, the effect of task dimension was statis-
tically controlled for. Finally, the effect of specific value repeti-
tions (e.g., when the color deviant carried the exact same color
across trials) was also ignored, but only after ensuring that includ-
ing this factor would not have affected the present conclusions.

Finally, the analyses reported above indicate that there were
more than twice as many distractor fixations than fixations of the
neutral stimulus, suggesting that competition during attentional
selection was mainly about potentially task-relevant objects, and
little additional information was contained in fixations to the
neutral object. Therefore, only data on target and distractor fixa-
tions are reported.

Results: Within-Trial Dynamics

RTs and accuracy. We eliminated the first trial of each
block, error trials, trials following an error, and all trials with RTs
longer than 3,000 ms from data analysis. Figure 4 shows RTs and
errors as a function of the switch and the CSI contrast for both
Experiment 1 and Experiment 2. As apparent, there were substan-
tial switch costs, as well as a reduction of costs as a function of CSI
for the 25% conditions; for Experiment 2, switch costs and the
preparation effect on switch costs were reduced as a function of
switch rate. We used a CSI � Switch � Response Congruency
analysis of variance (ANOVA) for Experiment 1—with added
linear and quadratic contrasts for the three-level switch frequency
factor in Experiment 2. Response congruency refers to whether
relevant and irrelevant stimuli afford the same or different re-
sponses. To keep overall complexity at bay, we do not dwell on

this factor too much in the present analyses (however, the Quali-
fications section below).

Experiment 1. Both the CSI and the switch main effects were
highly reliable: CSI, F(1, 12) � 28.04, p � .001, �2 � .70; switch,
F(1, 12) � 42.79, p � .001, �2 � .78, whereas the congruency
main effect was not significant, F(1, 12) � 1.0. The interaction
between CSI and the switch factor approached reliability, F(1,
12) � 4.64, p � .052, �2 � .28. No other effect was reliable. For
errors, there was a significant switch main effect, F(1, 12) �
19.84, p � .01, �2 � .62, as well as a main effect for response
congruency, F(1, 12) � 29.86, p � .001, �2 � .71, which was
modulated by a significant Switch � Congruency interaction, F(1,
12) � 9.18, p � .01, �2 � .43. Congruency effects (incongruent �
congruent) were 1.5% on no-switch and 4.7% on switch trails.

Experiment 2. We found highly reliable CSI � Switch, F(1,
69) � 16.19, p � .001, �2 � .19, and Linear Frequency � CSI �
Switch interactions, F(1, 69) � 25.67, p � .001, �2 � .26. The
size of the preparation effect on switch costs was 76 ms, F(1,
23) � 31.00, p � .001, �2 � .57; 35 ms, F(1, 23) � 7.26, p � .05,
�2 � .21; and �19 ms, F(1, 23) � 2.07, p � .17, �2 � .06, for the
25%, the 50%, and the 75% frequency groups. There was no main
effect for the response congruency factor, F(1, 69) � 0.57; how-
ever, congruency interacted with CSI, F(1, 69) � 15.77, p � .01,
�2 � .19, and there was a reliable three-way interaction between
CSI, switch, and congruency, F(1, 69) � 4.72, p � .05, �2 � .6.
Congruency effects for short-CSI, no-switch, and switch trials
were 24 ms, t(71) � 2.56, p � .05, and 14 ms, t(71) � 1.75, p �
.09. The corresponding scores for long-CSI trials were �23 ms,
t(71) � 3.54, p � .01, and 1 ms, t(71) � 0.17, p � .8. There were
no other higher order interactions involving the congruency factor.
The negative congruency effect for long CSIs suggests that prep-
aration counteracted response conflict (see also Monsell & Mizon,
2006). However, relative to the rest of the literature (including
Experiment 1) where typically incongruent trials are slower than
congruent trials, this is a somewhat unusual result.

Figure 4. Average response times (RTs) and errors as a function of cue–stimulus interval (CSI) and task switch
in Experiment 1 and as a function switch frequency, CSI, and task switch in Experiment 2.
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For errors, there was a small, but statistically highly reliable
switch main effect, F(1, 69) � 44.66, p � .01, �2 � .39; a
congruency main effect, F(1, 69) � 40.27, p � .01, �2 � .37; and
an interaction between these two factors, F(1, 69) � 10.67, p �
.01, which was further modulated through the linear frequency
contrast, F(1, 69) � 15.67, MSE � 5.57, �2 � .13, p � .01. The
switch effect on errors was larger on incongruent trials and when
switch frequency was low. In Figure 4, the error switch cost
appears to be a little larger with a low-switch frequency, which is
in the opposite direction to the effect for RTs. However, neither the
corresponding three-way interaction, F(1, 69) � 1.3, nor the
four-way interaction including the congruency factor was even
close to reliable, F(1, 69) � .15.

Summary. Our RT results generally replicated the pattern
reported by Monsell and Minzon (2006). The fact that the CSI �
Switch interaction was not quite reliable in Experiment 1 probably
reflects relatively low statistical power; the same effect in Exper-
iment 2 was highly reliable. In Experiment 2, we also found that
switch and preparation effects decreased with switch frequency,
suggesting that subjects were less likely to maintain task sets
across no-switch trials when frequent switches are required.

Eye Movements: Onset of Task-Congruent Attention

Figure 5 shows the proportion of all trials on which a fixation
fell within the target or distractor regions (i.e., fixation probabili-
ties) as a function of time in Experiments 1 and 2. As apparent, in
all conditions, the eyes did not move until about 250–300 ms after
stimulus onset. Although eventually the majority of fixations out-
side the cue region was directed toward the target, there was an
initial phase with no differentiation between target or distractor
fixations (i.e., circles vs. squares with the same color and filling).
Moreover, there were large condition differences in the point in
time at which probabilities of target-directed and distractor-
directed fixations separate. As elaborated in the introduction, we
suggest that this is the point at which top-down control over
attentional orienting becomes apparent. Inspection of Figure 5
suggests that on short-CSI switch trials there were about twice as
many “incorrect” eye movements to the distractor than on corre-
sponding no-switch trials, at least when switch frequency was 50%
or higher. As a result, the critical point of separation between
target and distractor eye movements was particularly late in these
conditions.

For a better appreciation of these effects, we computed the
difference scores between the probability of target versus distrac-
tor fixations (see Figure 6). For the 25% switch frequency condi-
tions in both experiments, these difference curves confirm that the
onset of task-congruent attention occurs about 100 ms later on
short-CSI switch trials than on short-CSI no-switch trials. This is
consistent with the configuration model’s prediction of a switch-
related delay in the onset of task-congruent attention. Furthermore,
this effect was eliminated for long-CSI trials, a result that is
consistent with the prediction that configuration can occur in a
proactive manner. In contrast, in the 75% condition of Experiment
2, a qualitatively different pattern emerged. Here, the onset of
control was delayed not only for switch but also for no-switch
trials in the short-, but not in the long-CSI condition. This result
confirms that configuration may be mandatory on switch trials, but
can occur on no-switch trials when there is little incentive for

maintaining the current task set (i.e., because of high-switch fre-
quency). Finally, the 50% condition is similar to the 25% condi-
tion. The delay in control on short-CSI switch trials may not be as
crisp; however, the overall trajectory is clearly shifted as a function
of the task switch.

To confirm these observations statistically, we determined for
each subject and condition the first 25-ms bin during which the
target-minus-distractor difference curves (see Figure 6) reached
4% or more for at least two successive bins. The onset latencies for

Figure 5. Probability of target and distractor fixations as a function of
time, cue–stimulus interval (CSI), and task switch in Experiment 1, and as
a function of time, switch frequency, switch, and CSI in Experiment 2.
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both experiments are presented in Table 1. For Experiment 1, The
CSI factor, F(1, 12) � 37.44, p � .001, �2 � .76; the switch
factor, F(1, 12) � 11.68, p � .01, �2 � .49; and the CSI � Switch
interaction, F(1, 12) � 17.43, MSE � 3094.95, p � .03, �2 � .59,
were all reliable. For Experiment 2, one subject in the 25%
frequency group and three subjects in the 75% condition never
reached the criterion for determining the top-down control onset in

at least one of the conditions. These subjects, who generally
showed few eye movements, were eliminated from the analysis.
The ANOVA of onset latencies revealed a linear Frequency �
CSI � Switch interaction, F(1, 65) � 14.79, p � .01, �2 � .19.
Highly reliable Switch � CSI interactions were obtained in the
25% and the 50% frequency conditions, F(1, 22) � 53.57; and,
F(1, 23) � 17.86. However, for the 75% condition, neither the
switch effect, F(1, 20) � 1.02, nor the CSI � Switch interaction,
F(1, 20) � 1.02, was reliable. The only reliable effect was a highly
significant delay of the onset latencies for short versus long CSIs,
F(1, 20) � 42.84. Finally, across all frequency conditions, the
switch effect was eliminated for long CSIs (all Fs � 1.4, p � .2).4

Eye Movements: Postonset Selectivity

So far, our results indicate that the onset of control is delayed for
short-CSI switch trials when switch frequency is low to moderate.
This result is consistent with the idea of a discrete processing step
that needs to be completed prior to the onset of task-congruent
attention. Now we turn to potential switch-related effects on the
eventually adopted attentional settings. In order not to confound
contributions of delayed onsets of top-down control and eventual
later effects, it is useful to look at the long-CSI condition, for
which there was no substantial switch cost in the onset of task-

4 One possibility is that the frequency-specific modulation of switch
effects on eye movement probability curves is not so much a result of the
global selection context, but rather of local sequential effects: In case of
low switch frequency, switch trials rarely follow other switch trials,
whereas the reverse is the case when switch frequency is high. However,
we also looked at eye movement probability curves across all frequency
conditions conditional on whether the previous trial was a switch or a
no-switch trial (i.e., keeping local context constant). In terms of the most
critical qualitative characteristics, probability curves were very similar
across all frequency conditions, in particular for the onset-specific effects,
suggesting that it is mainly the global context that drives the frequency-
specific modulation seen in Figures 5 and 6.

Figure 6. The probability of target minus the probability of distractor fixa-
tions as a function of time, cue–stimulus interval (CSI), and task switch in
Experiment 1 and as a function of time, switch frequency, CSI, and switch in
Experiment 2. The black bars at the bottom indicate each 25-ms bin with
significant differences between no-switch and switch trials (p � .05).

Table 1
Average Time Points (and Standard Deviations) at Which
Differences Between Individual Eye Movement Probability
Functions Toward the Target and the Distactor Reached at
Least 4% for Two Consecutive 25-Millisecond Time Windows as
a Function of CSI, and the Switch Contrast for Experiment 1
and as a Function of Switch Frequency, CSI, and the Switch
Contrast for Experiment 2

Switch
frequency

CSI

Short Long

No switch Switch No switch Switch

Experiment 1
25% 329 (37) 456 (132) 290 (30) 288 (44)

Experiment 2
25% 302 (19) 396 (60) 274 (18) 286 (27)
50% 306 (48) 362 (73) 278 (36) 278 (32)
75% 361 (56) 390 (151) 285 (41) 305 (85)

Note. CSI � cue–stimulus interval.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

499DYNAMICS OF CONTROL



congruent attention. As Figures 5 and 6 show, task-congruent
selectivity was greater on no-switch than on switch trials, even on
long-CSI trials. Figure 6 also shows the results of simple t tests
comparing switch with no-switch scores for each 25-ms bin. For
both experiments, there was a substantial portion of bins with
significantly fewer task-congruent eye movements in switch than
in no-switch trials. Thus, even though there was no difference in
the onset of top-down control between switch and no-switch trials
on long-CSI trials, the attentional settings were not sufficient to
ward off the persistent interference from the competing task. As
mentioned in the introduction, such a persistent switch-related
effect on task-congruent attention is difficult to reconcile with a
strict interpretation of the compound-cue model (Schneider &
Logan, 2005).

An interesting exception to this pattern occured in the 75%
short-CSI condition (Experiment 2). There was not only no switch
effect on the onset of attentional selectivity, but even beyond the
onset no switch effect emerged (except for an early reverse effect
in the direction of greater selectivity for switch trials). It is inter-
esting that this absence of task-congruent selectivity for short-CSI
trials gives way to strong selectivity for long-CSI trials. Given that
short- and long-CSI trials were randomly intermixed suggests that
attentional selectivity can be flexibly changed on a trial-by-trial
manner.

Discussion: Within-Trial Dynamics

The discrete shift in onset of task-congruent attention is consis-
tent with the configuration model, and it is difficult to explain from
the perspective of the compound-cue model (Schneider & Logan,
2005). However, the situation is a bit more complicated for the
Gilbert and Shallice (2002) model, which can account for a dis-
crete shift in onset of task-congruent processing. Carry-over of
activation from the preceding trial on switch trials leads to initial
task demand unit activation that favors the currently irrelevant task
(e.g., see Figure 5 in Gilbert & Shallice, 2002). Only after this
reversal is overcome can task-congruent selectivity begin. Even
though an onset delay is not inconsistent with the task-level
selection model, the fact that this effect is contingent on the overall
switch frequency is more problematic for the Gilbert and Shallice
model. After all, in this model, switch costs are the result of
passive priming of task demand node activation, with no mecha-
nism in place that allows for context-specific adaptations of such
priming effects.

Even if we grant that the carryover model could be amended to
allow context-specific adaptations, there is one aspect in our data
that such an “upgraded” carryover model cannot account for:
Although we found substantial switch costs in eye movement
parameters in case of long preparatory intervals for the 75%
condition, such effects were absent for the short-CSI condition.
From the perspective of the configuration model, it is plausible that
on short-CSI trials, the absence of the cue within the fixed
response-to-stimulus interval is used by subjects as a trigger to
abandon the last relevant task and turn toward the alternate task,
resulting in a lack of switch effects on attentional selectivity. In
contrast, on long-CSI trials, the cue can be used to flexibly engage
either in task maintenance (thereby benefitting from the attentional
setting carried over from the preceding trial) on no-switch trials or

in abandoning the previous and retrieving the next task on switch
trials.

It is difficult to see how the carryover model (Gilbert & Shallice,
2002) would explain such a pattern. After all, the main point of this
model is that one and the same parameter constellation is used
across trials, so that no “special” executive operation needs to
come in and tweak processing on particular trials. Obviously, any
parameter constellation that produces no switch costs on short-CSI
trials would do the same on long-CSI trials—which is clearly
inconsistent with the results we obtained (see Figure 6).

To conclude, the switch-specific delay in the onset of control is
consistent with the configuration model and can rule out some
(e.g., Schneider & Logan, 2005), but not all alternative accounts.
Evidence from the switch frequency manipulations adds empirical
constraints that are easily handled by the configuration model, but
difficult to accommodate by the task-level selection account (Gil-
bert & Shallice, 2002). In the next section, we turn to the analysis
of trial-to-trial dynamics to provide an additional source of infor-
mation for distinguishing between competing models of control.

Results: Trial-to-Trial Coupling Dynamics

We now turn to eye movement analyses of the coupling between
control settings across consecutive trials. In the introduction, we
had derived competing predictions about across-trial coupling dy-
namics from the carryover model and the configuration model (see
Figures 2 and 3), which we now put to an empirical test using
mixed linear model analyses. Recall that this empirical test re-
quires two complementary specifications. The first specifies eye
movements on trial n�1 in terms of what is relevant on that trial
and is ideal for testing the task-level selection model (see Figure 2a
and top-left panel of Figure 3). It is presented here in terms of
Models 1a, 2a, and 3a. The second specifies eye movements on
trial n�1 with relation to what is target and distractor on trial n
(i.e., as prospective targets/distractors) and allows a direct test of
the configuration model (see Figure 2b and bottom-right panel of
Figure 3). These specifications are presented as Models 1b, 2b, and
3b. In Models 1a and 1b, the dependent variable was whether or
not the eyes moved toward the target (coded as off-target � 0 vs.
on-target � 1) during the first 700 ms of a trial; in Models 2a and
2b, the corresponding analyses for eye movements to the distractor
were used. In each of these models, the pre-700 ms, trial n�1 eye
movements directed to the target or the distractor (again coded as
0 vs. 1), switch (coded as no-switch � 0 and switch � 1), and
Target � Switch and the Distractor � Switch interactions served
as fixed effect predictors. Note that given that we model here the
probability of eye movements to either the target or the distractor,
unstandardized coefficients can be interpreted in terms of proba-
bilities. For example, a coefficient of .09 between trial n�1 target
and trial n target on switch trials (see Figure 7a) indicates that the
probability of the eyes going toward the target increases by p � .09
if the eyes were on the target on the previous trial.

Trial n RTs were used in Models 3a and 3b as the dependent
variable and both trial n and trial n�1 eye movements to targets
and distractors as predictors along with the experimental variables.
Given that here the dependent variable is RTs, the coefficients can
be interpreted in terms of milliseconds. For example, the coeffi-
cient for the trial n target predictor is �86 on no-switch trials (see
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Figure 7a), suggesting that an eye movement toward the target
reduces same-trial RTs, on average, by that amount.

For all models, we removed linear and quadratic effects of
blocks and trials, as well as task effects in an initial preprocessing
step. Intercepts and all main effects were specified as subject-level
random effects and thus could vary across subjects. This ensures
that the fixed effects we report represent the averages of relation-
ships that were estimated within subjects. Models were analyzed in
R (R Development Core Team, 2008), using the lmer package
(Bates et al., 2008).

The fixed-effect results are presented in Figure 7 and in Table 2.
To foreshadow our findings, the coupling between trial n�1 and

trial n eye movements was somewhat complex and favored the
task-level selection account, but it was also relatively inconsequen-
tial for the prediction of RTs through previous-trial eye move-
ments. In contrast, the coupling pattern between trial n�1 eye
movements and trial n RTs strongly confirmed the predictions of
the configuration model. We begin by presenting the coupling
between trial n�1 and trial n eye movements (i.e., Models 1a, 2a,
1b, and 2b).

“Eye-to-Eye” Coupling Dynamics

In order to test the task-level selection model, we begin with the
specification in terms of task relevance (i.e., see top-left panel of
Figure 3). If the model is correct, coefficients for “horizontal”
(n�1 target to n target or n�1 distractor to n distractor) should be
positive, and “diagonal” coefficients (n�1 target to n distactor or
n�1 distractor to n target; see top-left panel of Figure 3) should be
negative. Most importantly, on switch trials, positive coefficients
should move into the negative direction and negative coefficients
in the positive direction. Consistent with expectations, we actually
did find highly reliable positive, horizontal relationships (see, e.g.,
Figure 7a) for no-switch trials. For example, the probability of
moving the eyes to the trial n target increased by p � .09 if the
eyes were on the trial n�1 target. However, the diagonal relation-
ships were positive instead of the predicted negative relationships.
Turning to switch trials, coefficients changed significantly in the
direction predicted by the task-level control model (e.g., trial n�1
target to trial n target from .09 for no-switch to .039 for switch
trials), except for the trial n�1 distractor to trial n target relation-
ship, which was significantly positive and did not differ between
no-switch and switch trials (.041 vs. .054). Thus, for three out of
four coefficients, the switch factor interacted with the trial n�1
predictors in the expected manner. At the same time, when the
model predicted a flip of coefficients into negative territory, co-
efficients remained positive, or at best near zero. One possibility is
that switch-specific effects sit on top of an unspecific positive,
trial-to-trial correlation of a general tendency to move the eyes to
any object on the screen.

It is noteworthy that predictions of the task-level selection
model were violated most blatantly for the relationships between
trial n�1 distactor and trial n target fixations. Not only were they
positive rather than negative on no-switch trials (no-switch � .041,
switch � .054), they were also not reliably affected by the switch
contrast. Interestingly, such a pattern is consistent with a conflict
monitoring mechanism (e.g., Botvinick, Braver, Barch, Carter, &
Cohen, 2001) where experience of conflict on trial n�1 (i.e.,
indicated through eye movements to the distractor) tightens control
and therefore increases target-directed processing on trial n. Inter-
estingly, the fact that this relationship was not modulated by the
switch factor suggests that conflict-triggered control might occur
in a way that is more consistent with general than task-specific
control (see, e.g., Freitas, Bahar, Yang, & Banair, 2007; but see
Goschke, 2000).

Model Variants 1b and 2b allow direct tests of the configuration
model by incorporating trial n�1 prospective targets and distrac-
tors (i.e., lower right panel in Figure 3). For no-switch trials,
results are identical to Models 1a and 2a. However, for switch
trials, the configuration model, but not the carryover model, pre-
dicts that “horizontal” relations (e.g., prospective target – � trial n

Figure 7. Results of the two complementary sets of analyses to test the
task-level selection model (corresponding to regression Models 1a, 2a, 3a;
top panels of Figure 3) and the configuration model (corresponding to
regression Models 1b, 2b, 3b; bottom panels of Figure 3). Coefficients and
dependent variables associated with the same model are contained in boxes
with the same color (Model 1: orange; Model 2: brown; Model 3: blue). For
each of the models, unstandardized coefficients and the corresponding
standard errors were estimated through separate analyses for no-switch and
switch trials, whereas the difference of the coefficients between no-switch
and switch trials was tested through the relevant interaction terms in the
combined analyses. The coefficients for the switch effects were also taken
from the combined analyses. Coefficients linked to eye movements as
dependent variables represent fixation probabilities, whereas coefficients
linked to response times (RTs) as dependent variable are in millisecond
units. Coefficients that are about twice the size of the standard error are
significantly different from zero. Symbols indicate approximate significant
differences between no-switch and switch coefficients (� p � .1. �� p �
.01.). Boxes with bold outlines indicate coefficients that are critical for
testing the two alternative models of control dynamics.
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Table 2
Fixed-Effect Results for Models Presented in Figure 7

Effect Unstandard coeff. SE t

Model 1a: Trial n target as dependent variable
intercept 0.011 0.003 4.38
n�1 target 0.089 0.010 8.83
n�1 distractor 0.040 0.009 4.74

switch �0.018 0.004 �4.86
n�1 Target � Switch �0.050 0.010 �4.80
n�1 Distractor � Switch 0.014 0.011 1.29

Model 1b: Trial n target as dependent variable
intercept �0.011 0.003 4.41
n�1 prosp target 0.090 0.010 8.97
n�1 prosp distractor 0.040 0.009 4.60

switch �0.018 0.004 �4.89
n�1 Prosp Target � Switch �0.034 0.011 �3.07
n�1 Prosp Dist. � Switch �0.002 0.010 �0.02

Model 2a: Trial n distractor as dependent variable
intercept �0.032 0.002 �13.36
n�1 target 0.023 0.007 3.51
n�1 distractor 0.033 0.008 4.22

switch 0.056 0.003 15.99
n�1 Target � Switch 0.018 0.009 1.96
n�1 Distractor � Switch �0.032 0.010 �3.25

Model 2b: Trial n distractor as dependent variable
intercept �0.032 0.002 �13.37
n�1 prosp target 0.023 0.007 3.17
n�1 prosp distractor 0.032 0.008 4.18

switch 0.056 0.004 15.98
n�1 Prosp Target � Switch �0.023 0.010 �2.38
n�1 Prosp Dist. � Switch 0.009 0.010 �0.98

Model 3a: Trial n RT as dependent variable
intercept �64.810 9.601 �6.750
n target �77.819 16.935 �4.595
n distractor 142.004 10.918 13.007
n�1 target �16.994 6.990 �2.431
n�1 distractor 29.519 7.115 4.008

switch 54.726 8.223 6.655
n Target � Switch �50.105 9.602 �5.218
n Distractor � Switch 38.329 10.0931 3.798
n�1 Target � Switch 7.468 8.938 0.836
n�1 Distractor � Switch �10.189 9.652 �1.056

Model 3b: Trial n RT as dependent variable
intercept �64.977 9.673 �6.717
n target �77.866 16.935 �4.598
n distractor 142.213 10.939 13.001
n�1 target �16.685 6.737 �2.477
n�1 distractor 28.826 7.224 3.990

switch 54.875 8.251 6.649
n Target � Switch �50.681 9.605 �5.213
n Distractor � Switch 38.336 10.094 3.789
n�1 Target � Switch 36.002 9.355 3.848
n�1 Distractor � Switch �37.765 9.218 �4.097

Note. Model 1a: Trial n target regressed on trial n�1 distractor and target, switch contrast, as well as all relevant interactions. Model 2a: Trial n distractor
regressed on trial n�1 distractor and target, switch contrast, as well as all relevant interactions. Model 3a: RTs regressed on trial n distractor and target,
trial n�1 target and distactor, switch contrast, and all relevant interactions. Models 1b, 2b, 3b used trial n�1 prospective distractor and targets instead of
trial n�1 targets and distractors. All “target” and “distractor” variables are binary and represent whether or not the eyes moved to either the target or the
distractor on that trial. For Models 1a, 1b, 2a, and 2b, coefficients represent probabilities; for Models 3a and 3b, coefficients represent response times in
milliseconds. Variables were residualized with regard to linear and quadratic effects of block and trial as well as task differences before being submitted
to these analyses. Each model also included as random effects the intercept as well as all main effects. Coefficients printed in bold were significant. The
criterion for a p � .05 significance level is a coefficient close to two standard errors (i.e., ts � 1.9). The degrees of freedoms for t values are not known
exactly for linear mixed models. However, given the large number of observations in our analyses, the t distribution has converged to the standard normal
distribution. In this case the 2-SE criterion is close to the conventional two-tailed 5% level of significance (e.g., Baayen et al., 2008, Note 1). Note that
small numerical differences in coefficients between this table and Figure 7 are due to the fact that for the figure, coefficients and standard errors for
no-switch and switch conditions were estimated through separate analyses. coeff. � coefficient; prosp � prosepective; dist. � distractor.
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target) should turn negative on switch trials, whereas if anything,
diagonal relations should become positive. For example, if the
eyes were on the same trial n�1 object type that will become
distractor on trial n (i.e., the prospective distractor), then a switch-
related reconfiguration should eliminate or even reverse any cross-
trial coupling that may exist on no-switch trials. However, as we
see in Figure 7b for this specific example, the probability of an eye
movement toward the distractor increases by p � .036 if the eyes
were on the trial n�1 prospective distractor, and if anything, this
probability increases to p � .04 on switch trials. Only the coeffi-
cients between the prospective target and the trial n target behave
in a manner that is consistent with the configuration model. The
three other coefficients either move in the reverse direction or are
unaffected by the switch factor. Thus, for eye movements as
dependent variable, trial-to-trial dynamics are more consistent with
the task-level selection than the configuration model. However,
overall, the positive evidence in favor of the carryover model is
weak and potentially clouded by additional factors, such as
conflict-triggered recruitment of control.

“Eye-to-RT” Coupling Dynamics

With Model 3a, we test whether the influence of trial n�1 eye
movements on trial n RTs is consistent with the task-congruent
carryover model (i.e., top-left panel of Figure 3). We also enter
here trial n eye movements as predictors, thus controlling for the
information represented on the level of trial n eye movements (i.e.,
the information captured with Models 1a and 2a). Thus, now
coefficients represent the average RT benefit or cost as a function
of trial n�1 eye movements. Given the inclusion of trial n eye
movements, we can also estimate the within-trial n predictive
relations between eye movements and RT. As shown in Figure 7a,
for no-switch trials, target-directed fixations produced a benefit of
nearly 90 ms and distractor-directed fixations a cost of about 130
ms; for switch trials, these values were even larger. This confirms
that eye movements to targets and distractors actually serve as
valid indicators of task-congruent attentional processing (but see
Footnote 3).

Turning now to the theoretically critical trial-to-trial relations,
we ask again to what extent direct paths between eye movements
to trial n�1 targets/distractors and RTs are consistent with either
the task-level selection or the configuration model. As both models
predict, for no-switch trials the influence from the n�1 target was
negative and that from the n�1 distractor was positive: An eye
movement to the trial n�1 target reduced the next-trial RT by 16
ms, whereas an eye movement to the distractor increased next-trial
RTs by 26 ms (see Figures 7a and 7b). For the switch trials, the
carry-over model predicts that these coefficients flip signs (i.e., the
trial n�1 target becomes the distractor, and the trial n�1 distractor
becomes the new target; see Figure 7a). In contrast, this relation-
ship was not reliably affected by the switch factor. Accordingly, a
chi-square test comparing models with and without switch inter-
actions for trial n�1 targets and distractors revealed no significant
difference, �2(2) � 1.97, p � .3.

With Model 3b, we test for an effect of switch-specific cognitive
control on the relationship between prospective targets or distrac-
tors and RTs. The configuration model predicts that the cross-trial
relationships flip in sign between no-switch and switch trials (see
bottom-right panel of Figure 3). This is exactly what we found: If

the eyes were on the trial n�1 dimension that becomes target on
trial n, RTs were reliably faster by 16 ms for no-switch trials, but
actually reliably slower by 19 ms for switch trials. Equally the
coefficients for the prospective distractors turned from reliably
positive to negative (i.e., from 26 to �7, although here the nega-
tive coefficient was not reliable; see Figure 7b). The chi-square test
comparing models with and without switch interactions with trial
n�1 targets or distractors showed a highly reliable difference,
�2(2) � 35.48, p � .001. Thus, for task switches, an additional
process eliminates the trial-to-trial coupling observed on no-switch
trials. As elaborated in the introduction, a significant reversal for
the relationship between prospective trial n�1 targets and RTs is
consistent with the idea that active inhibition of the no longer
relevant task is part of the configuration process (e.g., Mayr &
Keele, 2000).

By using both eye movements and RTs as dependent variables
(Models 1 and 2 vs. Model 3), we could—as a first approxima-
tion—separate between dynamics on the level of attentional selec-
tion and the level of response selection. However, it is also useful to
examine the net effect of the activity on these two levels. For this
purpose, we respecified Models 3a and 3b without controlling for
trial n eye movement predictors. For this revised Model 3a, we
found that the coefficients from trial n�1 target to trial n RT were
reduced from �20 (SE � 8.0) to �5 (SE � 7.6), for no-switch
versus switch trials, Switch � Trial n�1 Target: t � 1.33, and
those for n�1 distractors from .29 (SE � 7.0) to .16 (SE � 7.9),
Switch � Trial n�1 Target: t � 1.73.5 The direction of these
numerical, switch-related changes was consistent with the task-
level control model; however, in neither case were they significant.
For the revised Model 3b, we found for prospective targets a
highly significant inversion of the coefficient from �20 (SE � 8.0)
to 16 (SE � 7.9), and for prospective distractors, again a highly
significant inversion from 29 (SE � 7.0) to �4 (SE � 7.6). Thus,
even though on the level of eye movements there was some
evidence for task-level selection, the effect on RTs was muted and
not significant. The overall pattern was again clearly consistent
with the configuration model.

Examining the coefficients in Figure 7b, it is not surprising that
trial n�1 eye movements had only minor effects on trial n RTs.
Consider for example the strongest eye-to-eye coupling: A prob-
ability of .09 by which a fixation to the prospective target increases
the probability of a trial n fixation of the target on no-switch trials
would translate only into a 8-ms benefit on the level of RTs (i.e.,
.09 � �87 ms � 7.8 ms).

Finally, if the coupling effects reported here are indicative of a
configuration model, then it would be plausible to assume that they
are modulated through opportunity for proactive control or strate-
gic settings. Therefore, we added CSI (coded as �.5 and � .5) and
switch frequency (linear and quadratic contrast) as additional pre-
dictors, including all relevant interactions, which yielded a very
complex model, with a total of 59 fixed-effect predictors. The
pattern of theoretically critical coefficients reported above re-

5 Degrees of freedom for t values are not known exactly for linear mixed
models. However, with the large number of observations, the t distribution
converges to the standard normal distribution and a 2-SE criterion is close
to the conventional two-tailed 5% level of significance (e.g., Baayen,
Davidson, & Bates, 2008, Note 1).
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mained virtually unchanged, and none of the interactions including
these effects were reliable. However, some interesting numerical
trends emerged. Specifically, the coupling between the prospective
target and RTs for both no-switch trials and for switch trials was
generally reduced as switch frequency increased (i.e., the coupling
for no-switch trials became more positive, that for switch trials
more negative) (both effects t � 1.1). Thus, as switch frequency
increases, the trial-to-trial coupling may be strategically reduced.
We also found that both the negative coupling between the pro-
spective target and RTs during no-switch transitions and that
between the prospective distractor and RTs during switch transi-
tions became stronger for longer CSIs (t � 1.56 and t � 1.69),
indicating that trial-to-trial coupling may be at least partly depen-
dent on proactive control processes. These are weak effects that we
report here mainly for sake of completeness. However, they sug-
gest that the existence of strategic and proactive modulations of
trial-to-trial coupling effects cannot be ruled out on the basis of the
present results, and tests with greater statistical power will be
necessary for definitive conclusions.

General Discussion

The analysis of within-trial and across-trial eye movement dy-
namics provided a number of novel results about the nature of
flexible task control. In the preceding sections, we have already
addressed many of the specific theoretical implications. Here, we
summarize and expand on the most important findings.

Within-Trial Control Dynamics

Switch-related discrete delay in the onset of task-congruent
attention. When switch probability was low or moderate, the
onset of task-congruent attention reflected in eye movement prob-
ability curves was postponed by about 100 ms on switch trials, but
only when there was insufficient time to prepare (see Figures 5 and
6). This pattern is consistent with a discrete configuration step that
is required on switch trials, that needs to precede task-congruent
processing, and that can be executed proactively. In contrast, such
a pattern is inconsistent with the compound-cuing model (Sch-
neider & Logan, 2005).

Delayed onset of task-congruent attention for no-switch tri-
als when switch frequency is high. By itself, the switch-related
delay could also be consistent with the task-level selection account
(see, e.g., Gilbert & Shallice, 2002). However, the switch-related
delay was also strongly affected by the switch frequency manip-
ulation. The results suggest that for high switch frequency, the
delay was present even on no-switch trials (see Figure 6). This is
consistent with a discrete configuration process that is under
strategic control. Specifically, when switch frequency is high,
subjects operate under a general change-oriented control setting in
which reconfiguration and/or inhibition of the previous task tends
to be initiated even on no-switch trials (see also Mayr, 2006).

CSI-dependent modulation of task-congruent attention. A
rather subtle but theoretically important finding is that no-switch
effects on task-congruent selectivity were apparent in eye move-
ments when the switch frequency was high and CSI was short,
whereas substantial effects emerged when the CSI was long (see
Figure 6). Most likely this reflects the fact that for high switch
frequency and short CSI, subjects tended to abandon previous task

settings even on no-switch trials. However, cue-driven foreknowl-
edge on long-CSI trials replaced the a priori expectation and
allowed subjects to maintain the previous trial settings on no-
switch trials. Critically, given that CSI varied randomly from trial
to trial, this pattern suggests a kind of online modulation of
task-congruent attentional selectivity that would be difficult to
account for on the basis of a passive carryover account.

Trial-to-Trial Control Dynamics

Models that explain control phenomena without invoking higher
level task-unspecific control operations have been successful in
predicting mean-level effects (e.g., Gilbert & Shallice, 2002; Sch-
neider & Logan, 2005). At the same time, it has been difficult to
identify unambiguous empirical markers that could be linked to
task-unspecific control operations (e.g., Gilbert, 2005; Kiesel et
al., 2010; Schneider & Logan, 2005). However, as we have shown
here, task-level selection and configuration models make distinct
predictions about how the efficiency of control settings is coupled
across trials. Consistent with predictions from the task-level se-
lection model (Gilbert & Shallice, 2002), we found that attentional
settings on trial n�1 were predictive of attentional settings on trial
n as long as tasks stayed the same across trials. In case of switch
transitions, there was some evidence for a carryover pattern when
looking at eye movements as dependent variable. However, for
RTs as dependent variable, task-specific carryover was counter-
acted during switch transitions, a result that is consistent with the
configuration model.

The fact that the eye-to-eye coupling pattern was different from
that for eye-to-RT relationships requires some additional com-
ments. At least at first approximation, this suggests a separation
between coupling effects within the attentional/eye movement
system and those that arise as at the interface between attention
and response selection. A critical process in this regard may be the
linking of a specific stimulus dimension to response selection (e.g.,
Meiran, 2000). If a previously attended object type becomes less
available for being linked to response selection, this could explain
why attending the trial n�1 prospective target leads to longer RTs
and why attending the trial n�1 prospective distractor tends to
lead to faster RTs.

Given that the task-level selection account received at least some
empirical support, it would be premature to dismiss it. In fact, there is
no principled reason why control could not occur both on task-
specific and a more general level (e.g., Brown et al., 2007; Rougier &
O’Reilley, 2002). Moreover, our results suggest as an interesting
hypothesis for future research that in such a hybrid control model,
task-specific carryover characterizes control dynamics within the at-
tentional system, whereas the task-unspecific configuration is better
suited to explain effects on response selection.

Another interesting aspect about the across-trial coupling we
obtained (i.e., the complete flip in signs of coefficients) is that it is
qualitatively consistent with the coupling dynamics produced by a
model in which both activation of the relevant and inhibition of the
irrelevant task is used (for complementary evidence, see also
Koch, Gade, Schuch, & Philipp, 2010; Mayr & Keele, 2000). Of
course, this does not rule out the possibility that alternative models
could be constructed that can produce such a dynamic pattern
without inhibitory processes. In fact, we conducted additional
simulations, which indicated that a similar dynamic coupling pat-
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tern is also produced by a hybrid model with both task-level and
task-unspecific carryover of control settings. Thus, further exam-
inations of the relative contributions of task-specific, task-
unspecific, and inhibitory processes to the across-trial coupling
patterns remain an important goal.

These open questions notwithstanding, our results show for the
first time that information about the dynamic coupling across trials
can be useful for constraining models of control. In future work, it
will also be important to examine how such information can be
used to characterize differences in control architecture across se-
lection situations or individuals. In this context, it is also notewor-
thy that our logic of distinguishing configuration and carryover
models is analogous to the successful use of dynamic covariation
patterns for distinguishing between-hierarchical and nonhierarchi-
cal models of rhythm production (e.g., Krampe, Kliegl, Mayr,
Engberg, & Vorberg, 2000).

What Is the Source of Interference During Task
Selection?

Looking at within-trial and between-trial dynamics com-
bined, our results seem to represent an interesting paradox. The
within-trial dynamics showed that interference from the cur-
rently irrelevant task is generally increased on switch trials.
However, our analyses of between-trial dynamics revealed little
evidence for carryover effects (at least with regard to RTs) on
switch trials. Thus, the question is: If it is not carried over from
the immediately preceding trials, where exactly does the
switch-related interference come from that we see in the anal-
ysis of within-trial dynamics?

It is intuitively appealing to give the immediately preceding
trial and its influence on current-trial processing a special status
in task-switching situations (e.g., Gilbert & Shallice, 2002;
Yeung & Monsell, 2003). However, this may be misleading.
There is increasing evidence that a major source of interference
on switch trials arises from long-term memory (LTM) traces of
selection episodes beyond the most recent trial (e.g., Mayr,
2009; Mayr & Bryck, 2005; Waszak, Hommel, & Allport,
2003). Interestingly, people also seem to inhibit the previous
trial task set while switching to a new task (e.g., Mayr & Keele,
2000; Koch et al., 2010), thereby dampening the influence from
the most recent past.

The question remains why processing on switch trials is
particularly vulnerable to interference from past selection in-
stances. Bryck and Mayr (2008) have argued that on switch
trials, people are forced to retrieve the now relevant task rules
from LTM, and it is this process of retrieval that opens up
working memory—not only to relevant but also to unwanted
LTM traces (see also O’Reilley, 2006). Consistent with this
claim, these authors showed that an empirical phenomenon
often considered a signature of task set carryover, the switch-
cost asymmetry (Gilbert & Shallice, 2002), is not confined to
switch trials. Rather, an asymmetry in selection costs also
appears on those no-switch trials during which a retrieval
attempt is likely (e.g., because of a long intertrial delay).

Qualifications

We focused here on testing two possible “baseline models”: the
compound-cue model (Logan & Bundesen, 2003; Schneider &

Logan, 2005) and Gilbert and Shallice’s (2002) carryover model.
The virtue of these two models is their simplicity and that we can
derive from each clear predictions about within-trial and/or trial-
to-trial dynamics. Admittedly, these tests were also slightly unfair
as neither of the models was originally designed to account for eye
movement dynamics. It remains to be seen how difficult it would
be to amend them in order to account for the type of results
presented here. Connectionist models by Brown et al. (2007) and
Rougier and O’Reilley (2002) incorporate carryover of attentional
settings alongside switch-specific and/or conflict-specific control
processes. They may be better suited to reproduce the control
dynamics reported here.6 However, the explicit goal of both the
Gilbert and Shallice model (see also Gilbert, 2005) and the
compound-cue model (e.g., Schneider & Logan, 2005) has been to
challenge the idea of switch-specific, high-level control processes.
Therefore, we believe they are both worthy and tractable targets
for this first attempt of using eye movement information to con-
strain models of control.

Another important limitation is that by tracking eye movements,
we are assessing mainly task-switching effects on attentional input
selection, but at least at first sight have little to say about the role
of response selection. This is potentially problematic because
traditionally, conflict during response selection has been viewed as
a major source of task-switching deficits (e.g., Schuch & Koch,
2003). To determine how response selection and eye movements
are related in our paradigm, we conducted additional analyses, which,
for space reasons, we can present here only in summary form. First,
we looked at the probability curves in a response-aligned manner. The
general logic, which we borrowed from the analysis of response-
aligned event-related response waves, is that if major task-switching
effects arise beyond the attentional selection stage, we should see
switch or preparation effects on these response-aligned functions.
However, we found that effects on response-aligned curves were
generally much smaller than the corresponding effects on stimulus-
aligned probability curves, and in most cases completely absent. This
gives us confidence that at least within the present paradigm, eye
movement information does in fact present an adequate characteriza-
tion of task selection dynamics.

We also tested the effect of response congruency (i.e., whether
or not stimuli afforded the same or different responses across
the two tasks) as a reflection of response selection demands on
eye movement curves. Recall that we had found that generally
a task switch decreased the tendency to move the eyes toward
the target and increased the tendency to move toward the
distractor (i.e., see Figure 6). Interestingly, response incongru-
ency produced exactly the opposite pattern: There was a highly
significantly greater tendency for eye movements to move
toward the target on incongruent than on congruent trials,
indicating that switch effects on eye movements represent more
than just response-selection effects. Furthermore, this result
also suggests that “early” attentional selectivity is modulated
through conflict that arises in the “late” response-selection
stage (Kuhns & Mayr, 2011). More generally, these results

6 Another recent model by Altmann and Gray (2008) characterizes the
memory processes that are involved in task switching, but because it
contains no attentional parameters, it cannot be easily applied to the kind
of data we present here.
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suggest that eye movements inform not only about attentional
selection, but they can provide indirect information about pro-
cesses beyond the attentional selection stage.

Extensions

The analysis of the across-trial coupling patterns can help better
understand control phenomena beyond the task-switching context.
One currently prominent question in the literature is how, exactly,
control is elicited. An important idea is that it is mainly the
experience of conflict that triggers control attempts (e.g., Botvin-
ick et al., 2001). Our results contain some relevant evidence. We
found that trial n�1 eye movements toward the distractor led to an
increase of target-directed eye movements on trial n (see Fig-
ure 7a). Importantly, this effect was not affected by switch tran-
sitions, suggesting that recruitment of control is general (Freitas et
al., 2007) rather than task specific (Goschke, 2000; Monsell,
Sumner, & Waters, 2003). As mentioned in the previous section,
we also found evidence that experience of response conflict influ-
ences attentional selection within the same trial, which suggests a
much more immediate regulatory process (see also Scherbaum,
Fischer, Dshemuchadse, & Goschke, 2011) than the cross-trial
modulation proposed in the original conflict adaptation model
(Botvinick et al., 2001). Such results suggest that the present
approach should be useful for future, fine-grained examinations of
conflict adaptation processes.

Finally, in the context of the analysis of neuroimaging data,
researchers have become very adept at analyzing within-subject
temporal dynamics and dependencies. Initially, such analyses were
driven by methodological necessity—to detect systematic effects,
lagged dependences in the signal had to be modeled in an
individual-specific manner. Increasingly, however, the within-
individual dynamic coupling of activity patterns itself becomes an
important source of information, in particular with respect to the
functional connectivity of brain networks (Stephan et al., 2010).
On the psychological/behavioral side, similar developments have
been slower to come to the forefront. However, we show here that,
with sufficient trial-by-trial data quality and adequate statistical
methods, theoretically important information about behavioral
level “functional connectivity” can be obtained. This approach
should be useful for complementary neural level and behavioral
analyses (Kievit, Romeijn, Waldorp, Wicherts, Scholte, & Bors-
boom, 2011). However, even just on the psychological/behavioral
level, such an approach is appropriate whenever we are dealing
with theories that describe a dynamic system and assuming suffi-
cient within-subject data density is available. Beyond the area of
cognition, domains where related developments are already under-
way include personality (Borsboom, Mellenberg, Van Heerden,
2003), emotion regulation (Thompson et al., in press), or psychi-
atric symptomatology (Cramer, Waldorp, van der Maas, & Bors-
boom, 2010).

Conclusion

We analyzed eye movements to assess how interference/control
dynamics develop within and across trials in a task-switching
situation. Within-trial dynamics revealed a discrete delay in the
average onset of task-congruent attention on switch trials as long
as the time to prepare was short and switch frequency was low to

moderate. We interpret this pattern in terms of “special processes”
that can be executed proactively and that are mandatory on switch
trials, but are optional on no-switch trials. Likely, these involve
retrieving task-relevant information into working memory (Mayr
& Kliegl, 2003), setting attention on the now relevant dimension
(e.g., Meiran, 2000), and possibly also disengaging from the pre-
vious task (e.g., Mayr & Keele, 2000). Also between-trial coupling
dynamics were (with some qualifications) consistent with a model
that assumes switch-specific, but task-unspecific, higher order
configuration processes. To our knowledge, this is the first sys-
tematic assessment of how attentional settings influence one an-
other across time and within individual subjects. We believe this
provides a promising new way of characterizing the dynamics of
control, one that complements more traditional, “static” ap-
proaches.
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Appendix

Trial-to-Trial Dynamics in the Gilbert and Shallice (2002) and the Configuration Models

We wanted to verify our intuitions about how autocorrelative
patterns between successive control states play out in the Gilbert
and Shallice model and in the configuration model (see Figures 2a
and 2b). To this end, we adapted the original Gilbert and Shallice
model that was used to simulate switching between Stroop color
naming and word naming to our task situation. The basic archi-
tecture of the model involves two task-specific subnetworks for
each of the two tasks (Task A and B, Figure 2a and 2b). All
network units use sigmoid activation functions. Stimulus informa-
tion is represented in terms of separate, task-specific features and
fed to the input nodes. Weights for the links between input and
output units are preset so that a stimulus feature for a particular
task activates the corresponding output unit (e.g., SA1 to RA1) and
deactivates the alternative output unit (e.g., SA1 to RA2). There are
negative weights (i.e., inhibitory relationships) between the
input for the same task (e.g., SA1 and SA2) or between the output
units for the same task (e.g., RA1 and RA2). Corresponding re-
sponse units for the two tasks (i.e., RA1 and RB1 or RA2 and RB2)
are linked in an excitatory manner, whereas noncorresponding
response units (i.e., RA1 and RB2 or RA2 and RB1) are linked in an
inhibitory manner. This ensures that the model can produce re-
sponse congruency effects where response times and error rates
decrease when the stimulus affords the corresponding response
options relative to when the stimulus affords noncorresponding
response options.

For the carryover model, selection of appropriate tasks is
achieved through “task demand” units that also use exponential
activation functions and of which there is one for each of the two
tasks. The task demand units receive discrete, on/off input depend-
ing on which task is currently relevant, and they are connected
with each other through mutually inhibitory links. The task de-
mand units provide excitatory activity to the corresponding re-
sponse units and inhibitory activity to the noncorresponding re-
sponse units. Appropriate output activity from the task demand
units moves corresponding response unit activation levels into a
region where they become sensitive to input unit activity. Thus, the

demand units function as a gate between input and output unit
activity. As a mechanism for bottom-up-driven task set interfer-
ence, task demand units also receive input from response units.
Carryover of task demand activity is achieved in two ways: (a) by
preserving some of the task demand activity between trial n�1 and
trial n; (b) through single-trial Hebbian learning between response
input unit and task demand units, which is reset after each trial and
that leads to a tendency to reactivate the previous trial task demand
unit.

The model we used differs from the original Gilbert and Shallice
model in a few aspects. First, the original model used three instead
of only two response options per task (see also Gilbert, 2005).
Second, whereas for our model both tasks were equally “strong,”
the original model implemented an asymmetric dominance rela-
tionship between their two tasks (established via stronger stimulus
input for the dominant vs. the nondominant task, and compensa-
tory stronger control input for the task demand units of the non-
dominant task than the dominant task), which was not the case for
our model. Third, instead of the alternate runs paradigm simulated
by Gilbert and Shallice, tasks were randomly selected (p � .50
switch rate; variations in switch probability did not produce dif-
ferent results, which is not surprising, given that the model has no
mechanisms for adapting to such manipulations). We confirmed
that these changes to the original model did not alter the qualitative
pattern of mean effects reported by Gilbert and Shallice (2002).

The configuration model required the following additional
changes. The task-specific carryover parameter, the Hebbian learn-
ing between stimulus and task demand units, and the weights
governing mutual inhibition among task demand units were set to
zero. Instead, we added a “high-level control input” that provided
a positive top-down bias to the currently relevant and an equal
sized negative bias to the currently irrelevant task demand unit.
The size of the high-level control input (C) for trial n was given by
equation:

Cn � 6 � 	6 � Cn�1
 � .75 � noise,

(Appendix continues)
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where the initial value for C was 6, and noise was a rectangular
random distribution between �.5 and �.5, ensuring an autocorre-
lation between successive trial control states.

To characterize the trial-to-trial coupling pattern of the task-
specific carryover and the configuration model, we ran the simu-
lation for 10,000 trials with short CSI. We present in the left panels
of Figure 3 the correlations between the activity for successive
trial’s target and distractor task demand units after 20 cycles within
a trial and also with simulated RTs. The right panels of Figure 3
contain the corresponding values for the configuration model. The
top and the bottom panels use alternative specifications for ana-
lyzing trial-to-trial relationships (see text for details). We chose the

activity level after 20 cycles to represent the attentional setting
early in the trial; however, results did not change in a qualitative
manner when using activation patterns after different numbers of
cycles. We used simple correlations to portray the pattern of
trial-to-trial coupling because in the model, the different trial n�1
predictors are highly intercorrelated (e.g., there is no reliable
relationship between trial n�1 predictors and trial n RTs after
controlling for trial n predictors).

Received September 16, 2011
Revision received May 7, 2012

Accepted May 8, 2012 �

Members of Underrepresented Groups:
Reviewers for Journal Manuscripts Wanted

If you are interested in reviewing manuscripts for APA journals, the APA Publications and
Communications Board would like to invite your participation. Manuscript reviewers are vital to the
publications process. As a reviewer, you would gain valuable experience in publishing. The P&C
Board is particularly interested in encouraging members of underrepresented groups to participate
more in this process.

If you are interested in reviewing manuscripts, please write APA Journals at Reviewers@apa.org.
Please note the following important points:

• To be selected as a reviewer, you must have published articles in peer-reviewed journals. The
experience of publishing provides a reviewer with the basis for preparing a thorough, objective
review.

• To be selected, it is critical to be a regular reader of the five to six empirical journals that are most
central to the area or journal for which you would like to review. Current knowledge of recently
published research provides a reviewer with the knowledge base to evaluate a new submission
within the context of existing research.

• To select the appropriate reviewers for each manuscript, the editor needs detailed information.
Please include with your letter your vita. In the letter, please identify which APA journal(s) you
are interested in, and describe your area of expertise. Be as specific as possible. For example,
“social psychology” is not sufficient—you would need to specify “social cognition” or “attitude
change” as well.

• Reviewing a manuscript takes time (1–4 hours per manuscript reviewed). If you are selected to
review a manuscript, be prepared to invest the necessary time to evaluate the manuscript
thoroughly.

APA now has an online video course that provides guidance in reviewing manuscripts. To learn
more about the course and to access the video, visit http://www.apa.org/pubs/authors/review-
manuscript-ce-video.aspx.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

509DYNAMICS OF CONTROL


