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Multistep decision making pervades daily life, but its underlying
mechanisms remain obscure. We distinguish four prominent models
of multistep decision making, namely serial stage, hierarchical
evidence integration, hierarchical leaky competing accumulation
(HLCA), and probabilistic evidence integration (PEI). To empirically
disentangle these models, we design a two-step reward-based de-
cision paradigm and implement it in a reaching task experiment. In a
first step, participants choose between two potential upcoming
choices, each associated with two rewards. In a second step, partic-
ipants choose between the two rewards selected in the first step.
Strikingly, as predicted by the HLCA and PEI models, the first-step
decision dynamics were initially biased toward the choice represent-
ing the highest sum/mean before being redirected toward the
choice representing the maximal reward (i.e., initial dip). Only HLCA
and PEI predicted this initial dip, suggesting that first-step decision
dynamics depend on additive integration of competing second-step
choices. Our data suggest that potential future outcomes are pro-
gressively unraveled during multistep decision making.

multistep decision making | computational modeling | reaching task

Imagine leaving your house in search of food in the neighborhood.
Outside, you must first decide to go left or right. Going left

subsequently affords a second left–right choice between Thai and
Italian food, whereas going right affords another left–right choice
between Mexican and Lebanese food. This illustrates a typical two-
step tree path decision-making scenario (i.e., four potential tree
paths; see Fig. 1A). Such two-step decisions have been conceptu-
alized within the framework of model-based reinforcement learning
(1, 2), and recent work has focused on which brain areas underpin
reward representation in multistep decision making (3–5). However,
the computations underlying multistep decision making are still
debated. To address this issue, we distinguish four computational
models. We derive and contrast empirical predictions from the four
models and test them. In the following paragraph we explain the
common ideas and distinguishing features of the four models.
In each model, each tree path is associated with an evidence

(E) accumulator (e.g., in Fig. 1A, there are four tree paths; we
will use Fig. 1A and Supporting Information, Appendix A: Com-
putational Models, Fig. S1, to illustrate the four models). The two
leftmost E accumulators (i.e., leading to 3 and 9 in Fig. 1A) are
taken as inputs to a left motor evidence (ME) accumulator. The
two rightmost E accumulators project to a right ME accumula-
tor. All models reach decisions by gradually updating their E
and/or ME accumulator values at each iteration depending on
the rewards associated with each tree path. Models can be con-
ceptually distinguished based on three features. The first feature—
mapping—defines how E accumulators map to ME accumulators;
in particular, this feature distinguishes models where only the
maximally active E accumulator projects to its correspondent ME
accumulator [i.e., max-based mapping] from models where the
(weighted) sum of E accumulators project to their corresponding
ME accumulators (i.e., additive-based mapping). The second
feature determines the amount of temporal overlap between ac-
tivity at the E and ME levels. The third feature concerns the
interaction between E or ME accumulators. In particular, E/ME

accumulators can race independently (2) or interact (e.g., via
lateral inhibition) in some way (6, 7). We now describe the four
models in terms of these three features.
In the serial stage model (Supporting Information, Appendix A:

Computational Models, Fig. S1A), first, the mapping from E ac-
cumulators to ME accumulators is max-based; only the maxi-
mally active (here, two) E accumulators feed activation into their
ME accumulator (feature 1; mapping). Second, it imposes a
strict temporal separation between E accumulation and ME
accumulation (hence its name) (feature 2; overlap). During de-
cision making, each tree path accumulates evidence with a
constant rate defined by its total reward outcome (the higher the
reward, the higher the rate). When a competitor crosses a de-
cision boundary, the decision is made and the associated reward
selected (i.e., E stopping criterion). At this point, the winning E
accumulator projects to its corresponding ME accumulator.
When the difference between ME accumulators reaches a sec-
ond threshold, the decision is implemented (i.e., ME stopping
criterion). The same ME stopping criterion is used in all fol-
lowing models. Third, there is no interaction between E accu-
mulators or between ME accumulators (feature 3; interaction).
The hierarchical evidence integration (HEI) (Supporting In-

formation, Appendix A: Computational Models, Fig. S1B), first,
implements max-based mapping between E and ME accumula-
tion. Second, and like all following models, HEI allows more
temporal overlap between E and ME accumulation (8–10). Once
either one of the two leftmost (rightmost) E accumulators rea-
ches a threshold, the maximal leftmost (rightmost) E accumulator
projects to the left (right) ME accumulator. However, the losing E
accumulator is not pruned away and can potentially feed into its
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corresponding ME accumulator: For example, if at time t1 of the
decision process the EL,L accumulator (subindices indicate the left
at C1 and left at C2 pathway; see Fig. 1A) is higher than that for
EL,R, the EL,L accumulator feeds into the left ME accumulator.
However, if at time t2 (>t1) EL,R > EL,L, the EL,R accumulator
feeds into the left ME accumulator. Third, there is no interaction
between E accumulators or between ME accumulators.
In the hierarchical leaky competing accumulator (HLCA) (Sup-

porting Information, Appendix A: Computational Models, Fig. S1C)
model, first, the mapping between E and ME accumulators is
additive-based: ME accumulators receive additive input from their
E accumulators. Second, there is complete temporal overlap be-
tween E and ME accumulation; i.e., E accumulators feed ME ac-
cumulators from the very beginning of the decision process. Third,
E accumulators connected to the sameME accumulator interact via
lateral inhibition, and ME accumulators do not interact.
Finally, we envisage the probabilistic evidence integration (PEI)

(Supporting Information, Appendix A: Computational Models, Fig.
S1D) model (6). The PEI model reformulates the decision-making
problem in terms of generative probabilistic inference (11, 12).
Specifically, a generative model defines how situations, plans,
actions, and outcomes interact to generate reward (6). Decision
making is solved through inverse inference of this generative
model. The reward is treated as given (i.e., conditioned upon), and
the decision process amounts to computing which action best
predicts this reward occurrence. Decision making consists of

selecting the action that maximizes the probability of observing the
reward. Here, left E accumulators reflect the left–right choice
probabilities at C2, right E accumulators reflect the choice prob-
abilities at C3, and ME accumulators reflect choice probabilities at
C1 (Fig. 1A and Supporting Information, Appendix A: Computa-
tional Models, Fig. S1D). Because of this probabilistic formulation,
the expected rewards associated with ME accumulators are de-
fined by the probability-weighted sum of their corresponding
E-accumulator rewards. For example, in Fig. 1A the rewards as-
sociated with left E accumulators are, respectively, 3 and 9. At the
start of the decision process the choice probabilities linked to each
left E accumulator are uniform (i.e., 0.5 each). Thus, the expected
reward of the left ME accumulator is approximated by the mean of
its E accumulator rewards (0.5 × 3 + 0.5 × 9). When choice
probabilities of left E accumulators become more refined (i.e., as
posteriors are updated), the left ME accumulator expected reward
is approximated by the maximal reward of E accumulators (0 × 3 +
1 × 9). Therefore, first, the mapping between E and ME accumu-
lators is additive. At every iteration, these choice probabilities are
updated according to Bayes’ rule (Supporting Information, Appendix
A: Computational Models). Second, there is complete temporal
overlap between E and ME accumulation because all probabilities
are updated at every step. Third, probabilities are normalized
at every step [e.g., p(πLjC1,r) + p(πRjC1,r) = 1; Supporting
Information, Appendix A: Computational Models], which implicitly

Fig. 1. (A) Conflict trial. The highest mean of potential rewards is associated with going right at C1 (i.e., toward C3, the nonoptimal choice), whereas the
highest maximal reward is associated with going left at C1 (i.e., toward C2, the optimal choice). (B) No-conflict trial. Both the highest mean of potential
rewards and the highest maximal reward are associated with going left at C1 (i.e., toward C2, the optimal choice). (C) The serial stage model. The decision
dynamics for both conflict (red line) and no-conflict (blue line) trials throughout the trial are drawn toward the optimal choice. Note that both decision
patterns overlap (we increased line width of the conflict dynamics for figure clarity). (D) The HEI model. The dynamics of both trial types throughout the trial
are drawn toward the optimal choice, but with a stronger bias for no-conflict compared with conflict trials. (E) The HLCA model. The dynamics of conflict trials
display an initial dip before shifting toward the optimal choice. The dynamics of no-conflict trials throughout the trial are biased toward the optimal choice.
Note that at some point the dynamics of no-conflict trials display a drop-off. (F) The PEI model. The dynamics of conflict trials display an initial dip before
shifting toward the optimal choice. For no-conflict trials, the dynamics throughout the trial are biased toward the optimal choice. No-conflict trials are always
more biased toward the optimal choice compared with conflict trials. The horizontal dashed lines indicate the stimuli onset point. Full lines in C–F are av-
erages across 100 simulations; shaded areas represent ±1 SE.
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defines an interaction between left E accumulators, between right
E accumulators, and between ME accumulators.
We devised a paradigm to disentangle these four models.

Consider again the initial food search example. Imagine that
turning left affords you two types of food that you value, re-
spectively, at 3 and 9, whereas turning right affords you foods
that you value, respectively, at 7 and 8 (Fig. 1A). Hence, turning
right is associated with the highest mean between reward out-
comes. In contrast, turning left is associated with the maximal
reward. We call this a (mean-max) conflict trial (as in ref. 6).
Instead, imagine food reward values of 7 and 9 when you turn
left and 3 and 8 when you turn right (Fig. 1B). In this no-conflict
trial, the choice “turning left” is associated with both the highest
mean and the maximal reward. The serial stage, HEI, HLCA,
and PEI models predict distinct first-step (i.e., at C1) decision
dynamics in conflict versus no-conflict trials when participants
eventually select the accurate optimal choice (i.e., leading to the
maximal reward; Fig. 1 C–F). We clarify each model’s dynamics
and behavioral predictions below (see Supporting Information,
Appendix A: Computational Models, for a full explanation and
equations). We tested these predictions in two experiments: in a
button-press task and a reaching task (e.g., ref. 13). Participants
were shown two potential rewards linked to a first-left choice and
two potential rewards linked to a first-right choice. In a sub-
sequent second step, participants chose between the two po-
tential rewards linked to their first choice (Fig. 2 A and B).
The button-press task was used to check basic psychometric

properties of the task and fit parameters of all models. It also
tested whether conflict trials are slower than no-conflict trials, as
predicted by the HEI, HLCA, and PEI models (Supporting In-
formation, Appendix A: Computational Models). The reaching
task tested the main prediction of our study. First, the serial
stage model predicts no trajectory (i.e., decision dynamics) dif-
ferences for conflict and no-conflict trials (Fig. 1C). For both
trial types, the decision dynamics are biased toward the optimal
choice throughout the entire trial time course. Second, the HEI
model predicts that the decision dynamics of both trials are bi-
ased toward the optimal choice. However, the bias is stronger for
no-conflict than for conflict trials (Fig. 1D). Third, the HLCA
model predicts that the decision dynamics are different for both
trial types. Whereas the no-conflict trials are throughout the entire
time course biased toward the optimal choice, the conflict trials
are initially biased toward the nonoptimal choice (Fig. 1E). This

initial bias will from now on be called “an initial dip.” Fourth, like
the HLCA, the PEI model also suggests that decision dynamics
initially dip toward the nonoptimal choice for conflict trials before
being redirected toward the optimal choice. No-conflict trials
throughout the trial are biased toward the optimal choice (Fig.
1F). Furthermore, the bias toward the optimal choice is always
stronger for no-conflict than for conflict trials.

Results
Button-Press Task. The 2 (trial type: conflict, no-conflict) × 5
(quantiles) repeated-measures ANOVA revealed main effects of
conflict and quantiles both for accuracy [F(1,14) = 33.4, P <
0.001, and F(4,56) = 5.2, P < 0.01] and reaction times (RTs)
[F(1,14) = 59.9, P < 0.001, and F(4,56) = 446.8, P < 0.001]. We
further observed a significant interaction between both fac-
tors in accuracy [F(4,56) = 4.1, P < 0.01] and RTs [F(4,56) =
12.3, P < 0.001]. These results reveal a mean-max conflict effect,
whereby conflict trials are slower and less accurate compared with
no-conflict trials (see Supporting Information, Appendix A: Com-
putational Models for model predictions). Moreover, the in-
teraction reveals that the difference in accuracy between conflict
and no-conflict trials decreases as RTs become slower. The dif-
ference in RTs increases as RTs become slower (Fig. 3A).

Reaching Task. Fig. 3B shows the mean path trajectories (i.e.,
decision dynamics) for conflict (red lines) and no-conflict (blue
lines) trials. Mean conflict trajectories initially dip toward the
nonoptimal choice target before being redirected toward the opti-
mal choice target. One-sample t tests on trajectories’ x-dimension
positions revealed a significant deviation toward the nonoptimal
choice target from time steps 43–63 in conflict trials. Illustrative
single-trial initial dips are shown in Fig. 3C. Conflict trials deviate
toward the target representing the nonoptimal choice target before
being redirected toward the target representing the optimal choice
(red lines). In contrast, no-conflict trajectories are throughout the
trial biased toward the optimal choice target (blue lines). Further-
more, cross-validating the trajectory data, Fig. 3D displays the
percentage of trials favoring the optimal choice as a function of
normalized time for both the conflict (red line) and the no-conflict
trials (blue line). Crucially, one-sample t tests revealed that the
percentage of trials favoring the optimal choice as a function of
time initially dipped significantly below 50% in conflict trials from
time steps 39–57. This never occurs in no-conflict trials.
Both the HLCA (Fig. 1E) and PEI (Fig. 1F) models predict

the initial dip observed in the data (Fig. 3B). This is due to the
additive mapping from E to ME accumulators (feature 1; map-
ping), which appears crucial to account for (this aspect of)
multistep decision making.
The initial dip in conflict trials, alternatively, may be explained

by an attentional account, whereby participants may have initially
randomly sampled number stimuli one at a time. Under this as-
sumption, one could argue that conflict trials, displaying higher
rewards associated with the nonoptimal choice compared with the
no-conflict trials, would also induce an initial dip toward the non-
optimal choice. Such an alternative explanation can easily be
implemented within the HEI framework (Supporting Information,
Appendix A: Computational Models). We simulated two versions of
this alternative explanation. The first simulation was performed
with best-fit parameters of the HEI model (Supporting Information,
Appendix A: Computational Models, Fig. S7A). The second simu-
lation was performed with parameter settings that maximize the
chances of observing the initial dip (Supporting Information, Ap-
pendix A: Computational Models, Fig. S7B). Neither of these two
versions of the alternative explanation predicts an initial dip for
conflict trials. Furthermore, implementing the attentional account
within the serial stage model will never predict the initial dip be-
cause the decision process is implemented at the E-level accumu-
lation (Supporting Information, Appendix A: Computational Models).
This implies that the serial stage model will always induce similar
decision dynamics (i.e., reach predictions) for conflict and no-
conflict trials.
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Discussion
A reaching task was designed to test the predictions of the serial
stage, HEI, HCLA, and PEI models in multistep decision mak-
ing. Mean path trajectories dipped toward the nonoptimal choice
early in the trajectory before being redirected toward the optimal
choice. This initial dip feature was present in the HLCA and PEI
models. Therefore, the data refute the serial stage and HEI
models. We suggest that additive integration (feature 1; mapping)
from E to ME accumulators is a prominent model feature. The
HLCA model proposes that evidence integration of immediate
choices is based on a continuous input of potential future rewards
that compete with one another. The PEI model suggests that
expected rewards of immediate choices are initially approximated
by the mean of potential future rewards. As more information
becomes available, the inferred expected reward of each immediate
choice is gradually represented by the maximal reward available
following that choice. Both models describe a transition from the
sum (HLCA) or the mean (PEI) of rewards to the maximal reward
as driving evidence integration during the decision process.
To disentangle the several multistep decision-making models,

three paradigm attributes were crucial. First, we needed a mul-
tistep decision-making design. Indeed, in standard (single-step)

experimental designs using, for example, a constant coherence
percentage of a random dot motion display (9, 10, 14) or single-
step reward values (15), serial stage/HEI and HLCA/PEI models
are not easily distinguishable (6). Second, in a multistep decision-
making design, we needed mean-max conflict trials. In Solway and
Botvinick’s (2) multistep design, conflict trials occurred less than
3%. Third, we needed a reaching task to track the subject’s hand
position online (for a review on the use of reaching tasks for
testing cognitive theories, see ref. 16).
Because they implement additive-based accumulation, both

the HLCA and PEI predict an initial dip toward the nonoptimal
choice before shifting back toward the optimal choice in conflict
trials (Supporting Information, Appendix A: Computational Mod-
els, Fig. S1 C and D). Both HLCA and PEI also allow full
temporal overlap between E and ME accumulation. Although
the models are similar in these two features, the models did
make slightly different predictions (Fig. 1 E and F and Supporting
Information, Appendix A: Computational Models). The reason for
this divergence is that the interaction (competition) between E
(and ME for the PEI) accumulators was implemented differ-
ently in the two models. Interaction was based on mutual inhi-
bition in the HLCA (at the E-accumulator level) and on choice
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probability normalization (at the E- and ME-accumulator levels)
in the PEI. These differences need to be exploited in further
work to potentially disentangle both models.
Despite the traditional connection in the literature between

probabilistic and normative models, we do not consider the PEI
model as a normative model. Instead, it is used as a tool to
implement a specific decision-making hypothesis (17), consisting
of at least three features, of which perhaps the most important
one is that E accumulators are initially (i.e., early during decision
making) averaged.
We foresee at least three advantages of this additive feature in

multistep decision making. First, it allows a fault-tolerant online
construction of the decision tree. Indeed, when adding or aver-
aging potential future rewards, the system can initially function
appropriately even when later decision paths are “entwined”
(i.e., generated in their inappropriate path location). For ex-
ample, Fig. 1A shows a decision tree affording a choice between
3 (left–left path), 9 (left–right path), 7 (right–left path), and 8
(right–right path). The first response will still be correct in case
the agent initially generates a wrong tree such as 9 (left–left
path), 3 (left–right path), and 8 (right–left path), and 7 (right–
right path) before generating the correct one. Such a system
allows coping in real time with the multitude of sequential de-
cisions in natural environments and ultimately generates deep
decision trees. Second, decisions must sometimes be made with
limited cognitive resources, for example, due to strict time limits.
In such conditions, a valid option is to chunk (add or average)
future rewards and base an initial decision on this computation.
When environmental constraints are more lenient and allow
additional processing time, a more refined option can be com-
puted and lead the decision maker toward the maximal reward.
Hence, a trade-off exists between a costly evidence integration
process and obtaining a maximal reward (18). Third, in natural
environments the choice reflecting the maximal reward and the
choice reflecting the maximal average or addition of rewards will
often be the same. In such circumstances, it is advantageous to
have the decision dynamics initially attracted toward the choice
with the highest sum or mean value.
By way of comparison, the human visual system can represent

a large number of peripheral features in a single representation
known as a “visual ensemble” (19, 20). We propose that a similar
process occurs in multistep decision making. In particular, just as
one averages stimuli far away from the focus of attention in vi-
sual perception, one similarly averages stimuli “far away” (i.e.,
the future rewards of late decision steps) from the current focus
of decision in multistep decision making. In line with this pro-
posal, humans can extract ensemble statistics from a variety of
features and stimuli, including size (21, 22), speed (23), position
(24), spatial orientation, and frequency, even under reduced
attention (25). Furthermore, ensemble averaging is not limited
to low-level perceptual stimuli. Humans can efficiently extract
the average gender or emotion from a set of faces (26–28).
Crucial for our proposal, ensemble averaging is also possible
with symbolic stimuli: Humans can efficiently extract the mean
value of a set of number stimuli (29, 30).
LCA models have also been applied to value-based (31, 32),

perceptual (33, 34), lexical (35), and multialternative (36) de-
cision making. Similarly, generative models have been applied to
several aspects of cognition including concept learning (37),
causal learning (38, 39), motor control (40, 41), and perception
(42). In the present work, we further tested and provided evi-
dence suggesting that the computations involved in LCA (i.e.,
HLCA) and generative (i.e., PEI) models can be applied to
multistep decision making (43). Specifically, evidence integration
in multistep decision making is initially defined by the sum/mean
value of future potential rewards. Future research should aim
to disentangle these models. For example, such research could
focus on investigating how priors may be influenced by motiva-
tional (44), temporal (45), or emotional (46) factors. Further-
more, research in multistep decision making should also focus

on assessing how the representations of ensemble statistics are
neurally coded and evolve to bias decisions.

Materials and Methods
Participants. Fifteen (10 females, mean age = 22.1 and SD = ±2.1) and 20
(13 females, mean age = 22.5 and SD = ±3.2) subjects, respectively, partici-
pated in the button-press and reaching tasks in exchange for monetary
compensation, and all provided written informed consent. Experiments
were approved by the local ethics committee (Faculty of Psychology, Uni-
versité Libre de Bruxelles).

Experimental Designs and Stimuli. In the button-press task (Fig. 2A), partici-
pants were instructed to perform two speeded consecutive choices. In the
first step, participants chose between two potential upcoming choices, each
associated with two potential monetary rewards. In the second step, par-
ticipants chose between the potential rewards selected in the first step.
Participants first saw a fixation cross at the center of the screen (1,500 ms).
Subsequently, the four numbers forming the first-step choice appeared
surrounding the fixation. Participants were instructed to press on the side of
the optimal decision (i.e., leading to the maximal reward) as fast as possible
(speed limit of 1,500 ms). The first-step choice was followed by a jittered
interchoice interval (ICI) randomly selected from a uniform distribution
ranging from 700 to 900 ms in steps of 50 ms. The ICI was immediately
followed by the second-step choice and ended upon button press or time
limit (1,500 ms). Button presses were recorded with the RB-834 Cedrus re-
sponse box. The participants’ task was to gain as much money as possible by
making optimal choices (i.e., leading to the maximal reward). They were
informed that the magnitude of the selected second-step number was
proportional to real monetary reward (in euros). Every 16 trials, participants
received feedback indicating how much money had accumulated up to that
point. To keep them highly motivated, participants were told that their
monetary compensation would amount to their total accumulated money.
However, in the end they all received the same monetary compensation.

The reaching task was similar with the following differences (Fig. 2B). Each
trial started when participants touched (with a cordless pen) the start square at
the bottom of the screen, triggering the appearance of a fixation cross midway
between left and right targets. Participants were instructed to start moving
toward the fixation cross as soon as it appeared. When the y coordinate was
above 110 [i.e., the onset point, 13% of the total reach distance (y dimension)
between the start square and the target], the four numbers forming the first-
step choice appeared on screen, and participants had to reach the target cor-
responding to the optimal reach choice as fast as possible. To enforce speeded
reaches, a time limit of 1,500 ms was implemented. To begin the second-step
choice, participants had to press the start square again. The second-step choice
unfolded exactly as the first-step one, with the exception that the two selected
first-step numbers were randomly displayed to the left and right of the fixation
cross. Participants were told that, if they stoppedmoving or lifted the pen at any
point during the reach, the trial would be counted as null and a “do not stop”/
“do not lift the pen” sign would appear in the middle of the screen. Movement
trajectories were recorded with a Wacom LCD tablet DTF-720 sampling trajec-
tory coordinates at 60 Hz. Both tasks were implemented on Matlab using the
psychtoolbox 3 (47), and the screen resolution was 800 × 600.

Each experiment started with a training block of 16 trials. Subsequently,
participants performed three blocks of 199 trials. Each block comprised
96 conflict, 96 no-conflict, and 7 (3.5%) catch trials (see below) that were
randomly presented. Optimal choice side and number positions in the first-
step choice were fully counterbalanced.

Stimuli (i.e., potential rewards) were numbers ranging from 1 to 9. Catch
trials contained numbers from 10 to 13. These trials were included to prevent
participants from choosing based solely on physical features of the highest
potential reward (i.e., the features of the number 9). In the first-step choice,
stimuli were presented on the four corners of a virtual rectangle centered on
the fixation cross (width: 70 pxl; height: 40 pxl). The two stimuli on the left of
the fixation cross represented the left choice, whereas the two stimuli on the
right of the fixation cross represented the right choice. Difficulty overall was
similar in both trial types (Supporting Information, Appendix B: Trial Types
and Difficulty, Fig. S13).

Data Analysis: Button Press Task. Because model predictions concern first-step
choices, button-press RTs were analyzed only for the first-step optimal
choices. RTs faster than 100 ms were discarded from the analysis. To ap-
proximate the decision dynamics, RTs were binned into five quantiles, andwe
performed a 2 (trial type: conflict, no-conflict) × 5 (quantiles) repeated-
measures ANOVA on accuracy, as well as RTs.
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Data Analysis: Reaching Task. For the same reasons as in the button-press task,
reach trajectories were analyzed only for the first-step optimal choices. We
discarded all data points (i.e., x and y reach positions) before the stimuli
onset point. Additionally, trajectory time was normalized to facilitate tra-
jectory comparison between trials with different movement times and to
reduce interindividual variability. Specifically, the duration of every reach
was sliced into 101 time bins of identical length (13, 48, 49). Furthermore, to
compare empirical trajectories with the model decision dynamics displayed
in Fig. 1 C–F, we collapsed right-reach onto left-reach trajectories. All sub-
sequent analyses were performed on the normalized trajectories. To test the
decision dynamics and assess whether conflict trajectories would initially dip
toward the nonoptimal choice, we plotted the mean normalized trajecto-
ries. If conflict trials initially dip toward the nonoptimal choice, mean conflict
trajectories should deviate toward the nonoptimal choice target (i.e., away
from the midline between both choice targets) before being redirected
toward the optimal choice. We then performed a one-sample t test against
the average first time point (of the 101 normalized time points) x-dimension
position value and reported at which time point the trajectories significantly
deviated toward the nonoptimal choice for no-conflict and conflict trajec-
tories. In addition to the average (x and y) positions at each time point, we
computed the percentage of trials favoring the optimal choice as a function
of time. Similarly, we performed a one-sample t test against 50% (baseline
value) at every time point. If the decision dynamics are initially biased to-
ward the nonoptimal choice, the percentage of trials favoring the optimal
choice should initially dip below 50% before going to 100% (the optimal
value). Likewise, we report at which time point this percentage dips signif-
icantly below 50% for both trial types.

Model-Fitting Procedure. Models were fitted using differential evolution as
implemented in the DeMat Matlab toolbox [default implementation (50)].
The fitting procedure was similar to Solway and Botvinick (2). Each gener-
ation comprised 10 times the number of free parameters in the model, and
the entire data set was simulated for every combination of the parameters
(i.e., population member). Given the stochasticity in differential evolution,
the optimization procedure was repeated 10 times, and the best-fit pa-
rameters were retained. The objective function consisted of the residual sum
of squares of the group psychometric accuracy curves of the button-press
experiment (Fig. 3A, Upper graph). Accuracy was fitted because it is unclear
how accuracy should be weighted relative to RT. Moreover, this procedure
allowed us to test how well a specific parameter configuration generalized
beyond accuracy to the main variable of interest (i.e., trajectories; see Sup-
porting Information, Appendix A: Computational Models for button-press
task RT and accuracy predictions) (51). The optimization process was stopped
when parameters displayed identical values for 100 consecutive generations.
Best-fit parameters for each model are reported in Supporting Information,
Appendix A: Computational Models, Table S1.
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