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Exemplar theory assumes that people categorize a novel object by comparing its similarity to the memory
representations of all previous exemplars from each relevant category. Exemplar theory has been the
most prominent cognitive theory of categorization for more than 30 years. Despite its considerable
success in providing good quantitative fits to a wide variety of accuracy data, it has never had a detailed
neurobiological interpretation. This article proposes a neural interpretation of exemplar theory in which
category learning is mediated by synaptic plasticity at cortical-striatal synapses. In this model, catego-
rization training does not create new memory representations, rather it alters connectivity between striatal
neurons and neurons in sensory association cortex. The new model makes identical quantitative
predictions as exemplar theory, yet it can account for many empirical phenomena that are either
incompatible with or outside the scope of the cognitive version of exemplar theory.
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Exemplar theory assumes that categorization is a process of
learning about the exemplars that belong to the category. When an
unfamiliar stimulus is encountered, its similarity is computed to
the memory representation of every previously seen exemplar
from each potentially relevant category. The probability that the
stimulus is assigned to each category increases with the sum of
these similarities (Brooks, 1978; Estes, 1986, 1994; Kruschke,
1992; Lamberts, 2000; Medin & Schaffer, 1978; Nosofsky, 1986).

Exemplar theory has been the most prominent cognitive theory
of categorization for more than 30 years. Despite its considerable
success in providing good quantitative fits to accuracy data from a
wide variety of experiments, it has never had a detailed neurobi-
ological interpretation. This article corrects that shortcoming of the
literature. We propose a neural version of exemplar theory in
which category learning is mediated by synaptic plasticity at
cortical-striatal synapses. The neural version makes identical quan-
titative predictions to the exemplar model, yet it can account for
many empirical phenomena that are either incompatible with or
outside the scope of the cognitive version of exemplar theory.

One challenge to interpreting exemplar theory at the neural level
is to separate the quantitative predictions of the theory from the
cognitive interpretations that are used to justify those predictions.
At the cognitive level, exemplar theory assumes that people access
the memory representations of all previously seen exemplars. The
standard interpretation is that these are detailed replicas of each
exemplar (filtered by attentional processes) that do not typically
include contextual information (e.g., details about the experimental

room). The closest match in the memory literature to such repre-
sentations is probably provided by semantic memory.

This cognitive version of exemplar theory has been a challenge
to interpret at the neural level. First, the memory processes pos-
tulated by exemplar theory appear qualitatively different from all
of the memory systems that have been identified by memory
researchers. For example, within the memory systems literature,
semantic memory is assumed to be declarative. In contrast, exem-
plar theorists are careful to assume that people do not have con-
scious awareness that they are accessing exemplar memories when
making categorization decisions. Thus, the cognitive version of
exemplar theory appears to postulate a unique memory system that
has not yet been discovered by memory researchers.

It is important to note, however, that other instance-based the-
ories postulate more traditional memory systems. For example,
RULEX (Nosofsky, Palmeri, & McKinley, 1994) assumes people
use explicit rules during categorization but they memorize excep-
tions. Presumably, people are aware of these exceptions, so this
form of memory seems identical to semantic memory.

Previous attempts at providing a neural interpretation of the
cognitive processes postulated by exemplar theory have assigned
key roles to the hippocampus and surrounding medial temporal
lobe structures (e.g., Pickering, 1997; Sakamoto & Love, 2004).
The problem with these attempts is that the evidence supporting a
major role for medial temporal lobe structures in category learning
is weak.

First, medial temporal lobe interpretations of exemplar theory
predict that patients with damage to medial temporal lobe struc-
tures should be impaired in category learning. We know of three
studies that reported category-learning deficits in amnesiacs (Hop-
kins, Myers, Shohamy, Grossman, & Gluck, 2004; Kolodny, 1994;
Zaki, Nosofsky, Jessup, & Unversagt, 2003), one that reported
normal performance on the first 50 trials but impaired performance
later on (Knowlton, Squire, & Gluck, 1994), and one that reported
normal categorization by amnesiacs when the stimuli were faces,
but impaired performance when the stimuli were virtual reality
scenes (Graham et al., 2006). On the other hand, many more
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studies have reported intact category-learning performance in
patients with amnesia (e.g., Bayley, Frascino, & Squire, 2005;
Filoteo, Maddox, & Davis, 2001b; Janowsky, Shimamura,
Kritchevsky, & Squire, 1989; Knowlton & Squire, 1993;
Kolodny, 1994; Leng & Parkin, 1988; Squire & Knowlton,
1995; Zaki et al., 2003). For example, Filoteo et al. (2001b)
reported normal performance by amnesiacs in a difficult
information-integration categorization task with nonlinearly sep-
arable categories that required hundreds of training trials. In fact,
in the Filoteo et al. (2001b) study, one (medial temporal lobe)
amnesiac and one control participant completed a second day of
testing. Despite lacking an explicit memory of the previous ses-
sion, the patient with amnesia performed slightly better than the
control on the first block of Day 2. This result suggests that
amnesiacs do not necessarily rely on working memory to perform
normally in category-learning tasks (because working memory
cannot be used to retain category knowledge across days).

A second set of problematic results come from neuroimaging
studies of unstructured category-learning tasks. Unstructured cat-
egories are those in which the stimuli are assigned to each con-
trasting category randomly, and thus there is no rule- or similarity-
based strategy for determining category membership. Introspection
seems to suggest that the only way arbitrary categories of this type
could be learned is via explicit memorization, so if medial tem-
poral lobe structures play a critical role in any categorization task,
then unstructured categorization tasks seem like a good candidate.
Even so, fMRI studies of unstructured-category learning have
found task-related activity in the striatum, but typically not in the
hippocampus or other medial temporal lobe structures (Lopez-
Paniagua & Seger, 2011; Seger & Cincotta, 2005; Seger, Peterson,
Cincotta, Lopez-Paniagua, & Anderson, 2010). In addition, un-
structured category learning includes a motor component that is
more typical of striatal-mediated procedural learning than
hippocampal-mediated declarative learning (Crossley, Madsen, &
Ashby, 2012).

Third, a number of behavioral dissociations have been reported
that seem more consistent with a striatal locus for the learning of
similarity-based categories than a medial temporal lobe locus (for
a review, see Ashby & Valentin, in press). This work has con-
trasted rule-based (RB) and information-integration (II) category-
learning tasks. In RB tasks, the categories can be learned via some
explicit reasoning process (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998). In the most common applications, only one stim-
ulus dimension is relevant, and the participant’s task is to discover
this relevant dimension and then to map the different dimensional
values to the relevant categories. A variety of evidence suggests
that success in RB tasks depends on declarative memory and
especially on working memory and executive attention (Ashby et
al., 1998; Maddox, Ashby, Ing, & Pickering, 2004; Waldron &
Ashby, 2001; Zeithamova & Maddox, 2006). In II category-
learning tasks, accuracy is maximized with a similarity-based
strategy in which information from two or more incommensurable
stimulus components is integrated at some predecisional stage
(Ashby et al., 1998; Ashby & Gott, 1988). Evidence suggests that
success in II tasks depends on procedural memory (Ashby, Ell, &
Waldron, 2003; Ashby & Ennis, 2006; Filoteo, Maddox, Salmon,
& Song, 2005; Knowlton, Mangels, & Squire, 1996; Maddox,
Bohil, & Ing, 2004). Exemplar theory assumes a similarity-based
categorization strategy so it seems especially tenable for II tasks.

Furthermore, many researchers have argued that learning in RB
tasks is mediated by an explicit, rule-learning process that is
incompatible with exemplar theory (e.g., Ashby et al., 1998; Er-
ickson & Kruschke, 1998; McDaniel, Cahill, Robbins, & Wiener,
2014; Nosofsky et al., 1994; Rouder & Ratcliff, 2006).

Currently, at least 25 separate empirical dissociations between
RB and II category learning have been reported (Ashby & Valen-
tin, in press). Two of these are especially important for the present
purposes. First, II but not RB tasks are extremely sensitive to
feedback timing (Maddox, Ashby, & Bohil, 2003; Maddox & Ing,
2005; Worthy, Markman, & Maddox, 2013). In particular, II
learning is better when the feedback is delivered 500 ms after the
response than when the feedback is immediate or delivered after a
1-s delay (Worthy et al., 2013), whereas feedback delays of 2.5 s
or longer completely abolish almost all II learning (Maddox et al.,
2003; Maddox & Ing, 2005). In contrast, delays of up to 10 s have
no effect on RB learning. The II results are consistent with the
effects on cortical-striatal synaptic plasticity of delays between
dopamine (DA) release and Ca2� influx into the spines of medium
spiny neurons (Yagishita et al., 2014), and inconsistent with the
hypothesis that II learning is mediated by medial temporal lobe
structures. Another important dissociation is that switching the
locations of the response keys interferes with performance of II
tasks but not with performance in one-dimensional RB tasks
(Ashby, Ell, & Waldron, 2003; Maddox, Bohil, & Ing, 2004;
Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010; Spiering &
Ashby, 2008). This is relevant because a similar result has been
reported for the most widely studied procedural-learning task—
namely the serial reaction time (RT) task (Willingham, Wells,
Farrell, & Stemwedel, 2000), and procedural learning is thought to
depend on the striatum—not on the hippocampus.

This article describes a neural interpretation of exemplar theory
that easily accounts for all of these problematic results. First
though, we define the exemplar model more explicitly.

The Exemplar Model

Many researchers have tested exemplar models of categoriza-
tion (e.g., Estes, 1986, 1994; Medin & Schaffer, 1978; Nosofsky,
1986, 2011). These various versions are all highly similar, but to
establish mathematical equivalence it is necessary to focus on one
specific version of exemplar theory. The model has evolved some-
what from its initial description, so our focus will be on the
exemplar model known as the generalized context model (GCM;
Nosofsky, 1986, 2011).

The equivalence result established below holds for any number of
categories, but to keep the notation simpler we will assume a standard
categorization experiment with two categories A and B. Under these
conditions, the exemplar model assumes that the probability that a
participant assigns stimulus k to category A equals

P(A | k) �

�A �
i�CA

ViA�ik

�A �
i�CA

ViA�ik � �B �
i�CB

ViB�ik

, (1)

where CA and CB are sets containing the stimuli in categories A
and B, respectively, �ik is the similarity between stimuli i and k, �A

and �B are constants reflecting the participant’s bias toward re-
sponding A and B, respectively, and ViJ represents the memory
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strength of stimulus i with respect to category J. The memory
strengths ViJ are not free parameters, but instead are usually “set
equal to the relative frequency with which each exemplar i is
provided with Category J feedback during the classification train-
ing phase” (Nosofsky, 2011). Most categorization experiments
present all stimuli equally often, and in this case note that all ViJ

are equal and therefore can be canceled from Eq. (1).
Similarity is assumed to be inversely related to the distance

between the perceptual representations of the stimuli. More spe-
cifically, the distance between the perceptual representations of
stimuli i and k, denoted �ik, is computed from the weighted
Minkowski metric:

�ik � ��
j�1

m

wj | xij � xkj |r�1⁄r

, (2)

where m is the number of perceptual dimensions, wj is the pro-
portion of attention allocated to dimension j, xij is the coordinate
value of stimulus i on the jth perceptual dimension, and r deter-
mines the nature of the distance metric. In particular, r � 1
produces city-block distance and r � 2 produces Euclidean dis-
tance. Similarity is inversely related to distance via:

�ik � exp��c�ik
�� (3)

where c and � are constants. The parameter c is a measure of
stimulus sensitivity, which increases with the overall discrim-
inability of the stimuli. The constant � defines the nature of the
similarity function. In virtually all applications � � 1 or 2. A value
of � � 1, which produces the exponential similarity function
(Shepard, 1987), is typically combined with a city-block distance
metric, whereas a value of � � 2, which produces the Gaussian
similarity function, is typically combined with a Euclidean dis-
tance metric.

The Neural Model

Although the evidence does not favor medial temporal lobe
structures as the most important regions for category learning, it
does favor a critical role for the basal ganglia, and especially the
striatum—a major input region within the basal ganglia that in-
cludes the caudate nucleus and the putamen (for reviews, see, e.g.,
Ashby & Ennis, 2006; Seger, 2008; Seger & Miller, 2010). A
complete review is beyond the scope of this article, but briefly, in
addition to the dissociations between RB and II categorization
mentioned above, patients with striatal dysfunction are highly
impaired in category learning (e.g., Ashby, Noble, Filoteo, Wal-
dron, & Ell, 2003; Filoteo, Maddox, & Davis, 2001a; Filoteo et al.,
2005; Knowlton et al., 1996; Sage et al., 2003; Shohamy, Myers,
Onlaor, & Gluck, 2004; Witt, Nuhsman, & Deuschl, 2002), and
almost all fMRI studies of category learning have reported signif-
icant task-related activity in the striatum (e.g., Nomura et al., 2007;
Poldrack et al., 2001; Seger & Cincotta, 2002, 2005; Waldschmidt
& Ashby, 2011).

So the evidence is good that the striatum plays a key role in
category learning—at least in the learning of II and unstructured
categories (i.e., rather than RB categories). The problem for ex-
emplar theory is that basal ganglia neuroanatomy does not favor
traditional interpretations of exemplar representations. Virtually all
of cortex (except V1) sends excitatory (glutamatergic) projections

to the striatum (Reiner, 2010). These cortical inputs, which syn-
apse on medium spiny neurons (MSNs), are massively convergent,
with estimates that somewhere between 50,000 and 350,000 cor-
tical neurons converge onto a single striatal MSN (Bolam et al.,
2006; Kincaid, Zheng, & Wilson, 1998; Wilson, 1995). In contrast,
each of these cortical neurons might synapse onto as few as
10–100 MSNs (Wickens & Arbuthnott, 2010). Thus, it appears
that the resolution of the striatal MSNs is not dense enough to
allocate one MSN for every exemplar in any arbitrary category,
especially when exemplar similarity is high.

As a result, we propose a reconceptualization of “exemplar repre-
sentation.” To our knowledge, there are three existing process-level
interpretations of exemplar theory—attention learning covering map
(ALCOVE; Kruschke, 1992), the exemplar-based random walk
(EBRW; Nosofsky & Palmeri, 1997), and the information-
accumulation model (Lamberts, 2000). In each of these, the pre-
sentation of a new stimulus adds a new node to the network, and
this node serves as the exemplar representation of that stimulus on
all future trials. We propose instead that the presentation of a
stimulus either changes the synaptic strength at an existing
cortical-striatal synapse or creates a new synapse. As a result,
categorization training does not recruit any new nodes, rather it
alters connectivity between MSNs and units in sensory association
cortex.

In the remainder of this section, we show that under appropriate
conditions, such a model is mathematically equivalent to the
exemplar model described by Eqs. (1), (2), and (3).

Model Architecture

The architecture of the proposed model is shown in Figure 1.
Essentially this just reproduces the well-known direct pathway
through the basal ganglia, and is identical to the simplest version
of the procedural-learning system of the COVIS (competition
between verbal and implicit systems) model of category learning
(Ashby et al., 1998; Ashby & Crossley, 2011; Ashby, Paul, &
Maddox, 2011; Ashby & Waldron, 1999).

A B

A B

AB Thalamus

Premotor Cortex
B

Sensory Association Cortex

Striatum

GPi

noise
A

Excitatory
Inhibitory

εB εA

Bln β ln βA

response bias

Figure 1. Architecture of the model that is computationally equivalent to
exemplar theory. See the online article for the color version of this figure.
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Sensory association cortex is modeled in the same way as in
Ashby, Ennis, and Spiering (2007). Briefly, this means we assume
an ordered array of many units in sensory cortex, each tuned to a
different stimulus. Neurons in sensory cortex respond not only to
a preferred stimulus, but also more weakly to similar stimuli. In
perceptual neuroscience this phenomenon is described by the
neuron’s tuning curve. We model the tuning curve of each sensory
cortical unit in the Figure 1 model via radial basis functions—that
is, we assume that each unit responds maximally when its pre-
ferred stimulus is presented and that its response decreases with
the distance in perceptual space between the stimulus preferred by
that unit and the presented stimulus. The equivalence to exemplar
theory holds for any number of these units, so long as every
perceptually distinct stimulus maximally excites a different unit.
Given the known cortical-striatal convergence, with the two MSNs
shown in Figure 1 we would expect the relevant regions of sensory
cortex to include somewhere between 10,000 and 60,000 neurons.

The equivalence result established below assumes a standard
categorization experiment in which the stimulus is presented at
constant intensity and without a mask until the participant re-
sponds. Under these conditions, activation in each sensory unit is
0 during periods when no stimulus is displayed and is either 0 or
equal to some positive constant value during the duration of
stimulus presentation. More specifically, consider a trial when
stimulus k is presented. Then the response of sensory unit i during
the time when the stimulus is present will equal:

Ii	k � exp���ik
� ⁄ 
�, (4)

where �ik is the distance in perceptual space between the repre-
sentations of stimuli i and k as defined by Eq. 2. When � � 2, Eq.
4 describes a Gaussian radial basis function and when � � 1, Eq.
4 describes a Laplacian radial basis function. Either way, Eq. 4 is
a popular method for modeling the receptive fields of sensory
units, both in models of categorization (e.g., Ashby & Crossley,
2011; Kruschke, 1992) and in other tasks (e.g., Er, Wu, Lu, & Toh,
2002; Oglesby & Mason, 1991; Riesenhuber & Poggio, 1999;
Rosenblum, Yacoob, & Davis, 1996).

The key insight that links exemplar theory to cortical-striatal
synaptic plasticity comes from Ashby and Alfonso-Reese (1995),
who showed that exemplar models are equivalent to a classifier
that estimates each category distribution via a Parzen (1962) kernel
density estimator. Parzen kernels are known today as radial basis
functions, so the key to the Ashby and Alfonso-Reese (1995) result
was to recognize that the similarity function proposed by exemplar
theory (i.e., Eq. 3) could be interpreted as a radial basis function.
This reinterpretation of exemplar similarity provides a natural link
between exemplar theory and models such as COVIS that use
radial basis functions to model the response properties of sensory
cortical units.

The second key feature of exemplar theory is that similarities
are summed to determine category membership (i.e., see Eq. 1).
Radial basis functions are summed in two different ways in neural
models such as COVIS. First, each MSN responds to a weighted
sum of the radial basis functions that model activation in sensory
cortex, and second, the rules that govern synaptic plasticity (i.e.,
learning) dictate that the current synaptic strength is a weighted
sum of previous activations.1 This latter sum is especially impor-
tant when establishing equivalence to exemplar theory because it
depends on all previously seen exemplars, whereas the former sum

does not. So both exemplar theory and COVIS assign a key role to
weighted sums of radial basis functions of all previously seen
exemplars, and we believe it is this common feature of both
theories that causes such similar behavior in the two conceptually
different accounts of categorization. The mathematical equiva-
lence established below only requires the latter of these two
neural summing operations. Later however, we show that if
both neural summing operations are allowed and if many of the
ancillary assumptions required for exact mathematical equiva-
lence are relaxed, numerical equivalence is barely affected. We
believe this is because in both theories, behavior depends
fundamentally on sums of radial basis functions that are acti-
vated by stimulus presentation.

At the outset of a new experimental session, we assume that
the sensory cortical units are fully interconnected with the two
striatal MSNs. Specifically, every unit in sensory cortex syn-
apses with a dedicated spine on each of the two MSNs. Thus, if
there are 40,000 units in sensory cortex there are 40,000 spines
on each MSN.

Activation in each MSN is modeled using a firing-rate model
(Dayan & Abbott, 2001; Ermentrout & Terman, 2010; Wilson &
Cowan, 1972, 1973). Thus, the two MSNs shown in Figure 1 could
be viewed as two identical populations of MSNs, or the activations
produced could be viewed as average firing rates over many
repetitions of the stimulus conditions. Firing-rate models are de-
scribed by two equations. The first, typically written as a differ-
ential equation, describes how presynaptic input generates post-
synaptic activation. This equation typically describes within-trial
temporal dynamics and it integrates all sensory input, but in the
present application, only a very simple model is needed. In par-
ticular, there is no need to model the temporal dynamics of
within-trial activation or the summing of sensory inputs.2 Specif-
ically, it suffices to simply assume that the postsynaptic activation
in each MSN equals the presynaptic activation at the most active
spine weighted by the relevant synaptic strength. The most active
spine will be the one synapsing with the cortical unit that responds
most strongly to the stimulus. Let AJ(n) denote the activation in
striatal unit J (where J � A or B) on trial n. Then if stimulus k is
presented on trial n

AJ(n) � wJk(n)Ik	k

� wJk(n), (5)

where wJk(n) is the strength of the synapse between sensory unit k
and MSN J on trial n. The latter equality holds because no matter
how distance is defined, the distance from a point to itself must be
zero. As a result �kk � 0, and so Ik|k � 1 (i.e., for an � and any �).

The second firing-rate equation converts the postsynaptic acti-
vation into postsynaptic firing rate. This equation models nonlin-
earities in the neural response (e.g., response compression). Fol-
lowing the standard approach, we assume that the postsynaptic
firing rate in unit J, denoted by RJ(n) equals

1 Nonlinearities are introduced downstream of this summing process.
2 This integration leads to the weighted sum of all sensory cortical radial

basis functions activated by stimulus presentation.
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Rj(n) � F[AJ(n)] (6)

where F is a monotonically increasing function known as the
activation function. Equivalence to exemplar theory requires that F
behaves as a natural log. Thus3,

RJ(n) � ln[AJ(n)]
� ln[wJk(n)]. (7)

Figure 1 shows the major neuroanatomical projections from the
MSNs to regions in premotor cortex that control the motor re-
sponse. However, the equivalence result established here treats
these as simple relays that convey the signals generated within the
striatum to motor output units. Therefore, there is no need to model
activity in each of these regions separately. Instead, we simply
assume that the MSN firing rates are unaltered as they pass
through these relays. However, mathematical equivalence requires
that two important processes must occur within premotor cortex.
First, independent noise is added to each output unit. We assume
that the most active output unit controls the response on each trial,
so noise is needed to account for probabilistic responding. Second,
a response bias term is added to each MSN output. For equivalence
to the exemplar model the additive bias must equal B � ln �J

(Figure 1). So if we denote the activation in output unit J on trial
n as YJ(n) then

YJ(n) � RJ(n) � ln �J � εJ, (8)

where εJ is a random noise value. We assume that response A is
made on trial n if YA(n) 	 YB(n) and that response B is made if the
opposite ordering occurs.

Learning

DA is known to have pronounced effects on cortical-striatal
synaptic plasticity (e.g., Centonze, Picconi, Gubellini, Bernardi, &
Calabresi, 2001; Shen, Flajolet, Greengard, & Surmeier, 2008).
Much evidence suggests that strengthening of cortical-striatal syn-
apses (and long-term potentiation) requires strong pre- and post-
synaptic activation and DA levels above baseline. More specifi-
cally, the postsynaptic activation must be strong enough to activate
NMDA receptors (a high-threshold glutamate receptor). In con-
trast, cortical-striatal synapses are weakened (and long-term de-
pression occurs) if pre- and postsynaptic activation are strong and
DA is below baseline (e.g., Arbuthnott, Ingham, & Wickens, 2000;
Ronesi & Lovinger, 2005). DA levels rise above baseline follow-
ing unexpected rewards and fall below baseline following the
failure to receive an expected reward (Hollerman & Schultz, 1998;
Mirenowicz & Schultz, 1994; Schultz, 1998). As a result, a num-
ber of researchers have proposed that synaptic plasticity at
cortical-striatal synapses follows reinforcement-learning rules
(Doya, 2000; Houk, Adams, & Barto, 1995).

Suppose every sensory-cortical neuron has one synapse onto
each striatal MSN. A biologically motivated form of reinforcement
learning assumes that if stimulus Sk is presented on trial n, then the
strength of the synapse between striatal unit J (for J � A or B) and
sensory-cortical unit k on trial n � 1 equals (e.g., Ashby &
Crossley, 2011):

wJk(n � 1) � wJk(n) � �wIk	Sn
[RJ(n) � �NMDA]�[D(n) � Dbase]

�

� �wIk	Sn
[RJ(n) � �NMDA]�[Dbase � D(n)]�, (9)

where 
w and �w are the constant learning and unlearning rates,
respectively, [f (n)]� � f(n) if f(n) 	 0 and 0 if f(n) 
 0, �NMDA

is a constant specifying the threshold for NMDA receptor activa-
tion, D(n) is the amount of DA released on trial n, and Dbase is the
baseline DA level. Note that this model assumes that the amount
of synaptic strengthening (i.e., the plus term) is proportional to the
product of (1) presynaptic activation, (2) the amount that
the postsynaptic activation is above the NMDA threshold, and (3)
the amount that DA is above baseline. In contrast, the amount of
synaptic weakening (i.e., the minus term) is proportional to the
product of (1) presynaptic activation, (2) the amount that
the postsynaptic activation is above the NMDA threshold, and (3)
the amount that DA is below baseline.

Solving Eq. (9) iteratively produces

wJk(n � 1) � wJk(0) � �w�
i�1

n

Ik	Si
[RJ(i) � �NMDA]�[D(i) � Dbase]

�

� �w�
i�1

n

Ik	Si
[RJ(i) � �NMDA]�[Dbase � D(i)]�. (10)

Note that this solution includes a sum of radial basis functions
activated by all previously seen exemplars. Since the exemplar
model includes a similar such sum, this is the key feature of the
neural model that allows it to mimic the exemplar model.

Assumptions

Proving that this model is equivalent to the exemplar model
requires the following extra assumptions.

A1. Error trials do not change synaptic strengths. This
assumption implies that �w � 0 in Eq. (9). Although this assump-
tion is biologically implausible (e.g., Calabresi, Maj, Pisani, Mer-
curi, & Bernardi, 1992), it is not necessarily imcompatible with
exemplar theory. As noted above, exemplar theory assumes that
the memory strength of exemplar i in category J is strengthened
when a categorization response to exemplar i is provided with
category J feedback during classification training (Nosofsky,
2011). On trials when the response is correct this is clear. Positive
feedback unambiguously signals that the stimulus belongs to the
category associated with the participant’s response. However, on
error trials this is not so clear. Negative feedback typically only
signals that the stimulus does not belong to the responded cate-
gory. In the two-category case an inference can be made about the
correct category membership of the stimulus, but when there are
more than two categories, then no such inference is possible. As a
result, exemplar theory also seems to predict no learning on error
trials—at least in experiments with more than two categories.

A2. Only the spines on the striatal unit associated with the
most active motor unit are eligible for synaptic plasticity.
Assumptions A1 and A2 are clearly oversimplifications. However,
note that they tend to offset each other—at least to a certain extent.

3 The natural log has two problematic properties that make it an unusual
choice for an activation function. First, firing rates are commonly restricted
to the range [0,1] and, of course, the natural log is unbounded. Second, the
natural log can be negative, whereas activations and firing rates are usually
restricted to nonnegative values. Mathematical equivalence to the exemplar
model holds whether RJ(n) is positive or negative, but of course the model
is more biologically realistic if RJ(n) � 0. In practice, this can almost
always be arranged by replacing Eq. (4) with Ii|k � �exp�� �ik

� ⁄
� , for some
sufficiently large value of � (when the stimulus is present).
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Together they tend to ensure that active synapses on the MSN
associated with the incorrect response (call this the incorrect MSN)
never change strength. In the absence of these two assumptions,
those synapses would get strengthened on trials when the correct
MSN controls the response and weakened on trials when the
incorrect MSN controls the response. Another interpretation of
Assumptions A1 and A2, therefore, is that this strengthening and
weakening cancel each other out.

A3. All initial synaptic strengths are negligible—just large
enough to allow postsynaptic activation to the first stimulus
presentation, but small enough so that mathematically we can
assume that wAi(0) � wBi(0) � 0, for all i. A justification for
this assumption is that the presentation of a novel stimulus that has
no previous reward association causes DA release (e.g., Horvitz,
Stewart, & Jacobs, 1997; Wickelgren, 1997), and increased DA
levels potentiate the postsynaptic effects of glutamate (Ashby &
Casale, 2003). Thus, available evidence suggests that the first
presentation of a stimulus during an experimental session is likely
to cause an uncharacteristically large striatal response.

It is also important to note that even without this assumption the
contribution of wAi (0) and wBi (0) to wAi (n) and wBi (n) decreases
as n increases. In other words, the effects of the initial weights on
the asymptotic performance of the model are negligible. This is
important because the exemplar model is a model of asymptotic
performance—it was never proposed as a model of initial learning.
So although Assumption A3 is necessary for strict mathematical
equivalence, at the practical level this assumption is not critical.

A4. In whichever unit controls the response, [RJ(n) � �NMDA]�

[D(n) � Dbase]
� � K for all n, where K is a constant. In general,

we expect [RJ(n) � �NMDA]� to increase with n because the
synaptic strength associated with its sensory input should increase
as a result of training. In contrast, virtually all current models
predict that [D(n) � Dbase]

� will decrease with n because the
rewards become more predictable as training progresses. The
evidence is good that DA neurons respond to the reward prediction
error (Schultz, 2002; Schultz, Dayan, & Montague, 1997) – de-
fined as the value of the obtained reward minus the value of the
predicted reward. Thus, as learning progresses, accuracy rises and
so does the ability to predict the feedback valence. As a result, the
amount by which DA levels rise following positive feedback
should decrease. Thus, an alternative interpretation of assumption
A4 is that [RJ(n) � �NMDA]� increases with n at the same rate that
[D(n) � Dbase]

� decreases with n.
A5. The noise terms �J in Eq. (8) are independent random

samples from identical double exponential distributions. A
double exponential distribution is required for equivalence because
probabilities associated with the maximum of double exponen-
tially distributed random variables satisfy the relative goodness
rule of Eq. (1; Yellott, 1977). In particular, suppose ε1, ε2, . . . , εn

are a set of independent random variables with identical double
exponential distributions. Then (Yellott, 1977)

P�uk � �k � max
i�1

n
{ui � �i}� � euk

�
i�1

n

eui

. (11)

Equivalence to the Exemplar Model

In this section, we show that the model sketched in Figure 1
makes identical quantitative predictions as the exemplar model

described by Eqs. (1), (2), and (3), given the reinforcement-
learning model described earlier and under the assumptions out-
lined in the previous section. To keep the notation simple, we will
demonstrate the equivalence for a two-category task, but the equiv-
alence holds for any number of categories.

Consider a two-category task in which category A contains the
MA exemplars CA � {a1, a2, . . . , aMA

} and category B contains the
MB exemplars CB � {b1, b2, . . . , bMB

}. Note that there are four
kinds of trials: correct A response trials, correct B response trials,
incorrect A response trials, and incorrect B response trials. By
assumption 1, neither type of incorrect response trial will change
any synaptic weights. So first consider correct A response trials—
that is, trials when the stimulus belongs to the set CA and motor
unit A is more active than motor unit B. By assumption 2, no
synaptic strengths on unit B will change. So correct A response
trials will only cause changes in the strength of synapses on unit A.
Similarly, correct B response trials will only cause changes in the
strength of cortical-striatal synapses on unit B.

By assumptions A1 – A4, the reinforcement-learning model
described by Eq. (10) predicts that the strength of the synapse
between sensory unit k and striatal unit A reduces to

wAk(nA � 1) � �wK�
i�1

nA

Ik	Si
, (12)

where i � 1, . . . , nA denotes the first nA correct A response trials.
Suppose that of these nA trials, stimulus ai was presented nai

times
(so �i�1

MA nai
� nA, where MA is the number of exemplars in

category A). Note that Ik|Si
equals the response of sensory unit k on

a trial when stimulus Si is presented. By Eq. (4) this equation
becomes

wAk(nA � 1) � �wK�
i�1

nA

exp���kSi

� ⁄ 
�

� �wK�
j�1

MA

naj
exp���kj

� ⁄ 
�

� �wK �
j�CA

naj
exp���kj

� ⁄ 
�.

(13)

Of course, by identical reasoning, a similar equation will hold for
the synapses on striatal unit B.

Now consider the very next trial after all this training. Suppose
some stimulus k is presented. Then by Eq. (7) the firing rate in
striatal unit A will equal

RA � ln�wAk�
� ln	�wK �

j�CA

naj
exp���kj

� ⁄ 
�
. (14)

Similarly,

RB � ln	�wK �
j�CB

nbj
exp���kj

� ⁄ 
�
. (15)

By Eq. (8), activation in the output units will equal

YA � RA � ln�A � �A

� ln	�wK �
j�CA

naj
exp���kj

� ⁄ 
�
 � ln�A � �A

� ln	�wK�A �
j�CA

naj
exp���kj

� ⁄ 
�
 � �A,

(16)

and
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YB � ln	�wK�B �
j�CB

nbj
exp���kj

� ⁄ 
�
 � �B. (17)

Finally, by assumption A5

P(A | k) �

�wK�A �
j�CA

naj
exp���kj

� ⁄ 
�

�wK�A �
j�CA

naj
exp���kj

� ⁄ 
� � �wK�B �
j�CB

nbj
exp���kj

� ⁄ 
�

�

�A �
j�CA

naj
exp���kj

� ⁄ 
�

�A �
j�CA

naj
exp���kj

� ⁄ 
� � �B �
j�CB

nbj
exp���kj

� ⁄ 
�
,

(18)

which is clearly equivalent to the exemplar model described by
Eqs. (1), (2), and (3), with naj

� VjA, nbj
� VjB and � � 1/c.

Effects of Relaxing Assumptions

As is generally always the case, proving exact mathematical
equivalence requires strong assumptions. In particular, assump-
tions A1, A2, and A4 seem biologically unreasonable, and assump-
tion A5 seems arbitrary. A natural question to ask therefore is to
what extent equivalence depends on these assumptions. As men-
tioned earlier, we believe that the most important condition for
equivalence is that both models assume that categorization re-
sponses are largely determined by weighted sums of radial basis
functions of all previously seen exemplars. According to this view,
relaxing the ancillary assumptions needed for equivalence might
affect the initial learning trajectory of the neural model, but is
unlikely to profoundly affect the model’s predictions about asymp-
totic performance. This section tests that prediction.

To examine the importance of assumptions A1, A2, A4, and A5
we conducted a number of simulations of the neural model in the
absence of those assumptions. We call the model that satisfies all
assumptions and is mathematically equivalent to exemplar theory
the exemplar-equivalent model, and the more biologically realistic
version that satisfies all assumptions of the exemplar-equivalent
model except assumptions A1, A2, A4, and A5 the biologically
plausible model. Specifically, the biologically plausible model was
essentially identical to the procedural-learning component of the
COVIS model described by Ashby et al. (2011). It differs from the
exemplar-equivalent model in the following ways:

(1) The biologically plausible model changed synaptic strengths
on all trials. So this version of the model was not constrained by
assumption A1. The amount of synaptic weakening on error trials
was set equal to the amount of synaptic strengthening on correct
trials (i.e., � was set equal to 
 in Eq. 9).

(2) All cortical-striatal spines were eligible for synaptic plastic-
ity on every trial. In particular, synaptic strengths on both MSNs
were modified on every trial. So this version was not constrained
by assumption A2.

(3) No assumptions were made about the relationship between
the striatal and DA responses. So this version was not constrained
by assumption A4. In particular, DA release was set to the same
piecewise linear function of reward prediction error as in Eqs.
11–13 of Ashby et al. (2011).

(4) In the exemplar-equivalent model, double-exponentially dis-
tributed noise was added to the activations of the premotor units.

In the biologically plausible model, no noise was added to the
premotor units and normally distributed noise was added to the
MSN activations.

Our general goal was to compare asymptotic performance of the
exemplar-equivalent and biologically plausible models, and if
these differed, to ask whether the altered structure of the biologi-
cally plausible model was consistent or inconsistent with the
predictions of exemplar theory. To begin, it was important to set
parameter values in the exemplar-equivalent model to values that
are typical of previous applications of exemplar theory. To satisfy
this constraint, we did a crude search to find parameter values that
allowed the exemplar-equivalent model to reproduce the 16 
 2
confusion matrices predicted by the GCM in the Dimensional,
Criss-Cross, Interior-Exterior, and Diagonal transfer conditions
reported by Nosofsky (1986).4

The critical question now is how much these predictions will
change when we switch to the biologically more plausible version
of the model. It turns out that the predictions change only a small
amount. The r2 between the predictions of the exemplar-equivalent
and biologically plausible models was .999, .998, .981, and .955,
for the Dimensional, Criss-Cross, Interior-Exterior, and Diagonal
conditions respectively. Thus, the only condition where the pre-
dictions changed by a non-negligible amount was the Diagonal
condition. There are two possibilities here. Either the biologically
plausible model fundamentally changed the structure of the data in
a way this is incompatible with the exemplar model, or it changed
the predictions in a way that is consistent with exemplar theory but
best accounted for by some slight change in one or more parameter
values. To answer this question, we fit the GCM to the confusion
matrices predicted by the biologically plausible model. If the
biologically plausible model changed the structure of the data in a
way that is incompatible with exemplar theory, then the GCM will
fit poorly. In fact, the GCM provided excellent fits in all four
conditions. The r2 between the predictions of the biologically
plausible model and the GCM was .999, .999, .981, and .990, for
the Dimensional, Criss-Cross, Interior-Exterior, and Diagonal con-
ditions, respectively.

In summary, although exact mathematical equivalence requires
all assumptions described above, assumptions A1, A2, A4, and A5
have little effect on the asymptotic quantitative predictions of the
model.

Discussion

The neural model described in this article makes very different
psychological assumptions than are usually associated with exem-
plar theory, yet it is mathematically equivalent to the exemplar
model. The cognitive version of exemplar theory assumes people

4 The model was run through the same sequence of trials as the Nosofsky
(1986) participants—that is, 1,200 training and 3,500 transfer trials for
each category structure. We fit the model to the average of the Subject 1
and Subject 2 GCM predicted confusion matrices, and we used the coor-
dinates of each stimulus in physical, rather than perceptual space. This is
because our goal was not to reproduce exactly what Nosofsky (1986) did,
but rather to produce predictions of the exemplar-equivalent model that
were representative of a typical exemplar model application. In this sense
we were successful because when we fit the exemplar model (i.e., the
GCM) to the confusion matrices that resulted from this process, r2 was
.996, .996, .994, and .993 for the Dimensional, Criss-Cross, Interior-
Exterior, and Diagonal conditions, respectively.
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retrieve memory representations of previously seen exemplars and
that they compare the presented stimulus to these stored memories.
Every new stimulus creates a new memory representation. In
contrast, the neural version assumes that no memory representa-
tions are retrieved. For example, the neural model assumes that
stimulus presentation always activates two striatal MSNs (in two-
category tasks), regardless of the number of exemplars in each
category and regardless of the number of training trials. Instead of
adding a new exemplar memory representation, the neural version
of exemplar theory assumes that presentation of a new stimulus
either modifies the strength of an existing cortical-striatal synapse
or creates a new synapse (e.g., by adding a new spine to an existing
MSN). Thus, the exemplar representation in the neural version of
exemplar theory is either the strength of a cortical-striatal synapse
or perhaps it could be interpreted as a dedicated spine on an MSN.
The more important point however, is that stimulation of that MSN
(or that dendritic spine) would not retrieve an exemplar memory,
but rather create an urge to respond either A or B, and in this sense
the neural version makes different psychological assumptions than
classical accounts of exemplar theory.5

Mathematical equivalence to the (GCM) exemplar model re-
quires a number of strong assumptions that in some cases are
biologically implausible. Even so, we showed via simulation that
these assumptions have little effect on the asymptotic predictions
of the model. Thus, the neural model described here mimics the
numerical predictions of exemplar theory when the biologically
implausible assumptions are replaced by assumptions that are
more biologically realistic. We believe that the predictions of the
neural model are robust with respect to violations of these ancillary
assumptions because in both models the probability that a stimulus
is assigned to a particular category increases with the weighted
sum of radial basis functions activated by all previously seen
exemplars from that category. The ancillary assumptions do not
change this fundamental property of the neural model, and since
this same property is shared by exemplar theory, the two psycho-
logically different models make similar (or even identical) quan-
titative predictions.

Because the two models make identical or nearly identical quanti-
tative predictions, any previous evidence in favor of the exemplar
model that is based on its success in providing good quantitative fits
to categorization data is also evidence in favor of the neural model.
But in addition, the neural model is able to account for many empir-
ical phenomena that are either incompatible with or outside the scope
of the cognitive version of exemplar theory. This includes all the
problematic data reviewed earlier in this article.

First, because the neural model assumes that the critical site of
category learning is at cortical-striatal synapses, it easily accounts for
the many reports that patients with striatal dysfunction are impaired in
category learning. Second, for the same reason, it accounts for the
common fMRI finding of categorization-related activation in the
striatum (Lopez-Paniagua & Seger, 2011; Nomura et al., 2007; Pol-
drack et al., 2001; Seger & Cincotta, 2002, 2005; Seger et al., 2010;
Waldschmidt & Ashby, 2011). Third, it accounts for the many em-
pirical dissociations that have been reported between RB and II
categorization tasks. For example, it accounts for the sensitivity of II
category learning to feedback delays because of the known sensitivity
of cortical-striatal plasticity to delays between DA release and activity
at cortical-striatal synapses (Valentin, Maddox, & Ashby, 2014;
Yagishita et al., 2014). It also accounts for the interference that occurs

in II and unstructured categorization performance when the location
of the response buttons is switched—because the terminal nodes in
the Figure 1 model are in premotor cortex, rather than prefrontal
cortex. Fourth, it accounts for deficits by patients with Parkinson’s
disease in II and unstructured category learning (Hélie, Paul, &
Ashby, 2012).

If more anatomical details are added into the model of the
striatum (as in Ashby & Crossley, 2011; Cantwell, Crossley, &
Ashby, 2015; Crossley, Ashby, & Maddox, 2013), then the neural
version of exemplar theory can also account for a wide variety of
other phenomena, including(a) single-unit recordings from MSNs
and TANs during instrumental conditioning (Ashby & Crossley,
2011); (b) many behavioral phenomena from instrumental condi-
tioning experiments, including fast reacquisition after extinction,
the partial reinforcement extinction effect, spontaneous recovery,
and renewal (Crossley, Horvitz, Balsam, & Ashby, 2016); (c) the
result that recovery from a full reversal is quicker than learning
new categories constructed from the same stimuli (Cantwell et al.,
2015); and (d) unlearning and failures of unlearning (e.g., renewal)
during II categorization (Crossley et al., 2013; Crossley, Ashby, &
Maddox, 2014).

David Marr (1982) famously described three levels of mathe-
matical modeling, which he referred to as computational, algorith-
mic, and implementational. Computational models (often called
descriptive models in psychology) make quantitative predictions,
but do not describe the algorithms that produce those predictions.
Algorithmic models (often called process models in psychology)
describe the algorithms, but not the architecture that implements
those algorithms. At the lowest level, implementational models
describe the architecture that implements the algorithms that pro-
duce the quantitative predictions. The original versions of exem-
plar theory—for example, the version described by Eqs (1), (2),
and (3)—were computational-level descriptions of asymptotic cat-
egorization behavior (i.e., the theory made no attempt to account
for learning). Cognitive process was used to motivate the quanti-
tative predictions, but no attempt was made to model those pro-
cesses. To see this, note for example, that Eq. (1) makes no
predictions about what response a participant will make on any
single trial of a categorization experiment. Rather, it simply de-
scribes the relative proportion of times the participant will give
every possible response under the ideal conditions in which the
same categorization trial is repeated an infinite number of times.

As one moves down Marr’s hierarchy, it is generally true that
more than one interpretation is possible. For example, we know of
three different algorithmic-level versions of exemplar theory
(Kruschke, 1992; Lamberts, 2000; Nosofsky & Palmeri, 1997),
which all make slightly different assumptions. The neural model
proposed here is the first known implementational-level version,
and it shows that some qualitatively different psychological as-
sumptions are compatible with the quantitative predictions of
computational-level versions of exemplar theory. One of the main
reasons for developing lower-level versions of any theory is to
account for more data. The algorithmic-level versions of exemplar
theory can account for response time and learning data that are

5 Note however, that many parameters have the same meaning in both
accounts, including the response biases �J, the attention weights wj, and
overall discriminability c.
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outside the scope of the computational-level version. And the
neural version proposed here can account for many phenomena
that are outside the scope of the algorithmic-level versions. Al-
though many other neural versions may be theoretically possible,
the many extra constraints provided by all these neuroscience-
related phenomena would seem to narrow the set of candidate
neural interpretations to a model that assigns a major role to the
striatum. If so, then any alternative neural interpretation that is also
consistent with the available neuroscience-related data should look
qualitatively similar to the version proposed here (e.g., because
both models would be constrained by the same basal ganglia
neuroanatomy).

The neural version of exemplar theory is essentially a simplified
version of the procedural-learning component of the COVIS model
of category learning6 (Ashby & Crossley, 2011; Ashby et al.,
2007; Cantwell et al., 2015). The COVIS model includes much
more biological detail (e.g., spiking MSNs, striatal cholinergic
interneurons), other brain areas (e.g., interlaminar thalamic nuclei),
a more sophisticated reinforcement-learning model (e.g., with rate-
limiting terms that constrain synaptic strengths to a fixed interval
[0, wmax]), and it does not make any of assumptions A1–A5. Even
so, it is important to note that the equivalence established here
greatly benefits both theories. Of course it provides exemplar
theory access to a huge range of neuroscience-related phenomena
that generally are outside the scope of any purely cognitive theory.
But it also greatly benefits COVIS. First, it means that successes of
the exemplar model in providing good quantitative fits to catego-
rization data imply that COVIS should be equally successful at
accounting for those data. Second, it provides a method to quickly
fit COVIS to asymptotic response proportions collected in the
course of a categorization experiment. Fitting the COVIS model
currently requires time-consuming Monte Carlo simulations and
therefore, exploring its predictions is a challenging computa-
tional process. In contrast, the exemplar model is simple enough
that it can quickly be fit to data in a straightforward manner
using standard optimization algorithms. Therefore, because of
the equivalence established here, asymptotic behavioral predic-
tions of COVIS can be quickly tested by fitting the exemplar
model to the empirical confusion matrices.

Finally, this article makes one more equally important contribution.
The equivalence of exemplar theory and the procedural-learning com-
ponent of COVIS means that it is probably fruitless to attempt to test
between these two models by comparing goodness-of-fits in any
categorization experiment. Instead, the two historically disparate ap-
proaches to categorization modeling should be used together to create
a more powerful armamentarium that can be used to improve our
overall understanding of categorization behavior.

6 COVIS assumes this procedural-learning component dominates in
unstructured and II category-learning tasks, but that an explicit-learning
system controls behavior in RB tasks. Exemplar theory was proposed
before there was any evidence or inclination that humans might have
multiple category-learning systems. In the interim, some exemplar theorists
have proposed a second rule-learning system (e.g., Erickson & Kruschke,
1998; Nosofsky et al., 1994). Of these, perhaps most similar to COVIS is
ATRIUM (attention to rules and instances in a unified model; Erickson &
Kruschke, 1998), which includes two submodels—an explicit rule-learning
model that would dominate in RB tasks and an exemplar model that would
dominate in unstructured and II tasks.
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