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There is substantial evidence from animal research indicating a key role of the neuropeptides oxytocin
(OT) and arginine vasopressin (AVP) in the regulation of complex social cognition and behavior. As social
interaction permeates the whole of human society, and the fundamental ability to form attachment is
indispensable for social relationships, studies are beginning to dissect the roles of OT and AVP in human
social behavior. New experimental paradigms and technologies in human research allow a more nuanced
investigation of the molecular basis of social behavior. In addition, a better understanding of the neuro-
biology and neurogenetics of human social cognition and behavior has important implications for the
current development of novel clinical approaches for mental disorders that are associated with social def-
icits (e.g., autism spectrum disorder, social anxiety disorder, and borderline personality disorder). This
review focuses on our recent knowledge of the behavioral, endocrine, genetic, and neural effects of OT
and AVP in humans and provides a synthesis of recent advances made in the effort to implicate the
oxytocinergic system in the treatment of psychopathological states.

� 2009 Elsevier Inc. All rights reserved.
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C1. Introduction

In non-human mammals, receptors for the neuropeptides oxyto-
cin (OT) and arginine vasopressin (AVP) are distributed in various
brain regions [94] associated with the central nervous control of
stress and anxiety and with social behavior, including parental care,
pair-bonding, social memory, and social aggression. Specifically, OT
seems both to enable animals to overcome their natural avoidance of
proximity and to inhibit defensive behavior, thereby facilitating ap-
proach behavior [24,26,28,45,84,124,147,164]. AVP has primarily
been implicated in male-typical social behaviors, including aggres-
sion, pair-bond formation, scent marking, and courtship [24,28,45,
104,165].

Aside from its effects on social behavior, OT shows significant
binding in the limbic system, including the amygdala [80,81,
94,132], and decreases anxiety and the neuroendocrine response
to stress in social interactions [11,27,120,123,158,159]. In contrast,
AVP seems to play an anxiogenic role, with elevated AVP expres-
sion in the hypothalamic paraventricular nucleus being associated
with increased behavioral and neuroendocrine anxiety levels
[117]. In addition, Ferris and colleagues [49] showed that the orally
active AVP V1a receptor antagonist SRX251 selectively blocks
aggressive behavior in hamsters. At a cellular level, Huber and col-
leagues [80] reported that distinct populations of neurons in the
86
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88

89
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s et al., Oxytocin, vasopressin, a
amygdala are activated by OT and AVP receptor stimulation,
through which these peptides modulate the integration of excit-
atory information from the amygdala and cerebral cortex in oppo-
site manners. These results suggest that the endogenous balance
between OT and AVP receptor expression and activation may set
distinct, individually tuned levels for the activation of the auto-
nomic fear response. In general, centrally active AVP seems to be
associated with increased vigilance, anxiety, arousal, and activa-
tion, while OT has behavioral and neural effects associated with re-
duced anxiety, relaxation, growth, and restoration [25]. Thus, both
peptide hormones are important in social stress and in social inter-
action, and in turn, a dysregulated activity may be associated with
mental disorders of psychosocial relevance. While much of the
knowledge regarding the ability of OT and AVP to regulate social
interactions is based on data from animals using centrally admin-
istered agonists and antagonists or knockout mice, initial studies
suggest similar social and stress-related effects of both neuropep-
tides in humans (for review, see [12,68]).

Here, we review recent advances in the endeavor to understand
the role of OT and AVP in human social behavior. In the first part of
this review, we summarize the methodological approaches in hu-
man neuropeptide research and examine the significance of OT
in stress-responsiveness, anxiety and prosocial behavior. In the
second part, we address the role of AVP in social behavior. Finally,
we conclude by outlining the clinical implications for mental disor-
ders that are associated with social deficits, and provide a synthesis
of the interactions of anxiety and stress, social approach behavior,
and the oxytocinergic system.
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/

mailto:m.heinrichs@psychologie.uzh.ch
http://www.sciencedirect.com/science/journal/00913022
http://www.elsevier.com/locate/yfrne


T

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

2 M. Heinrichs et al. / Frontiers in Neuroendocrinology xxx (2009) xxx–xxx

YFRNE 404 No. of Pages 10, Model 5G

18 June 2009 Disk Used
ARTICLE IN PRESS
R
E
C

2. Methodological approaches in human neuropeptide research

Our current knowledge of the behavioral effects of neuropep-
tides in humans is based on: (i) correlational studies measuring
OT or AVP in urine, saliva, blood or CSF, (ii) correlational studies
involving genotyping of receptor polymorphisms, and (iii) experi-
mental studies manipulating the availability of OT or AVP using
intravenous or intranasal administration. All of these approaches
bear different levels of invasiveness and side effects and do not
have an equivalent informative value in terms of the underlying
central nervous mechanisms of the peptides.

Whereas the assessment and interpretation of urine or saliva
measures provide inconsistent findings and need further investiga-
tion [9,29,51,79,157], CSF levels of OT or AVP are accompanied by
high invasiveness. Besides the endogenous stimulation of OT during
breast-feeding and positive physical contact, leading to attenuated
endocrine responses to stress in women [3,38,66,70,72,103,146],
studies in humans have also been carried out with exogenous
administration of OT and AVP. Intravenous OT infusion has been
shown to induce significant behavioral effects [76,77], but it appears
that only a small fraction of the neuropeptide passes the blood-brain
barrier [87], and possible side effects are more likely following intra-
venous infusion of neuropeptides.

Recent neuropharmacological research has shown that neuro-
peptides gain access to the human brain after intranasal adminis-
tration [18,41,66,129], providing a useful method for studying
the central nervous effects of OT and AVP in humans [68]. In par-
ticular, a potential clinical use is dependent on a more direct and
secure pathway to the human brain. In addition, a neurogenetic ap-
proach provides new insight into the individual variation of social
behavior and can easily be combined with behavioral measures
and functional imaging [92,113].

The detailed mechanism of brain penetration of OT and AVP fol-
lowing different methods of administration and the relationship
between plasma and central OT and AVP (including possible
cross-talks of these neuropeptides at their respective central recep-
tors) is an area that warrants further investigation [111]. In addi-
tion to in vitro studies on binding sites in the human brain [106]
and recent advances made in identifying neural activity using fMRI
[68], the development of specific radioactive labeling of neuropep-
tides in positron emission tomography will provide a better under-
standing about how OT and AVP receptors are mapped in the
human brain.
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O3. Oxytocin and human social behavior

3.1. Social stress and anxiety

In animal studies, OT has been found to be released peripherally
and within the brain in response to both physical and psychologi-
cal stress and fearful situations [120,121]. Intracerebral OT has
been shown to inhibit the stress-induced activity of the hypotha-
lamic–pituitary–adrenal (HPA) axis responsiveness [119,123] and
the activity of the amygdala in the modulation of the autonomic
fear response [80]. Numerous studies on the inhibitory influence
of OT on stress-responsive neurohormonal systems focused on
the endogenous stimulation of OT during lactation in rodents.
The suckling stimulus by the newborn was found to increase OT re-
lease and decrease basal plasma levels of ACTH and cortisol
[26,27,121,148,149,160].

In lactating women, the increase of OT following breast-feeding
is associated with dampened levels of ACTH and cortisol
[7,31,72,122]. In addition, lactation in humans also appears to re-
duce responses to physical and psychosocial stress exposure. In
lactating women, attenuated HPA axis responses can be observed
Please cite this article in press as: M. Heinrichs et al., Oxytocin, vasopressin, a
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if breast-feeding starts 30–60 min before stress exposure, depend-
ing on the kind of stressor [3,6,70]. As no effect of stress has been
found on OT plasma levels, OT does not seem to mediate the atten-
uation of cortisol stress responses at the adrenal level [72]. Thus,
the inhibitory effect of OT on HPA axis responsiveness points to a
more central modulation and could, in fact, be localized in the
paraventricular nucleus and in the septum, as demonstrated in rats
[120,121]. Interestingly, breast-feeding mothers with increased
plasma OT in response to a speech stressor that immediately fol-
lowed baby-holding were found to have lower blood pressure than
mothers with a decrease in OT after stress [103]. Furthermore, non-
postpartum healthy women who showed increased plasma OT lev-
els in response to positive emotion and massage and who main-
tained OT levels during negative emotion were less likely to
report interpersonal problems associated with intrusiveness
[146]. Maintaining OT levels during sadness has also been associ-
ated with lower anxiety in close relationships [146]. Recently, Dit-
zen and colleagues [38] showed that women receiving
standardized physical contact from their partner (neck and shoul-
der massage) before stress exposure exhibited significantly lower
cortisol and heart rate responses to stress compared with women
who received verbal social support or no social interaction from
the partner. Another study by Holt-Lunstad and colleagues com-
pared a warm touch intervention in couples with a monitoring-
only control group [78]. Touch resulted in increased salivary OT
and a subsequent reduction in sympathetic tone indicated by low-
er systolic blood pressure as well as reduced alpha amylase. Alto-
gether, these results from human studies suggest a possible
protective effect of endogenous OT stimulation.

Within this context, however, it should be noted that there are a
variety of confounding factors, in particular the release of other
hormones (e.g., prolactin or opioid peptides), which are difficult
to control for in endogenous stimulation paradigms such as lacta-
tion or physical contact (see Neumann in this issue [140]). More-
over, plasma concentrations of OT have not proven to closely
reflect the central nervous availability of the neuropeptide [94].
Thus, the specific effects of central OT as an underlying biological
mechanism for the reduction of stress and anxiety in humans need
to be investigated using challenge procedure methodologies
involving OT administration in double-blind, placebo-controlled
designs.

In an initial study, we were interested in investigating the inter-
active effects of an altered availability of central nervous OT and
social support in a standardized psychosocial stress protocol [67].
In a double-blind, placebo-controlled design, all participants were
randomly assigned to receive intranasal OT (24 IU) or placebo
50 min before stress, and either social support from their best
friend during the preparation period or no social support. Subjects
who received both social support and intranasal OT exhibited the
lowest cortisol concentrations during stress exposure, whereas
subjects who received no social support and placebo demonstrated
the highest cortisol response [67]. Notably, there were correspond-
ing results in terms psychological measures: subjects without so-
cial support and with placebo showed the expected decrease in
calmness and increase in anxiety during stress, while participants
who received either social support or OT or both protective factors
showed increasing calmness and decreasing anxiety scores during
stress. Moreover, pre- and post-stress comparisons of anxiety
showed an anxiolytic effect of OT administration. In another study,
Ditzen and colleagues [39] show that 40 IU intranasal OT increases
positive communication behavior during a couple conflict in both
men and women, and significantly reduces cortisol reactivity,
which is in line with animal studies indicating that central OT facil-
itates pair-bonding behavior. However, intranasal 24 IU OT treat-
ment did not alter appetitive, consummatory, and refractory
sexual behavior in men [22]. Altogether, OT seems to play an
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/
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important role as an underlying biological mechanism for the well-
known stress-protective effects of positive social interaction.

As reported above, animal research indicates that central ner-
vous OT modulates the autonomic fear response via OT receptors
in the amygdala. In an initial functional magnetic resonance imag-
ing (fMRI) study in humans, Kirsch and colleagues [91] assessed
amygdala activation using aversive, fear-inducing visual stimuli
in healthy men following double-blind, placebo-controlled cross-
over substance administration. The authors found that 27 IU intra-
nasal OT reduced amygdala activity and reduced coupling of the
amygdala to brainstem regions implicated in autonomic and
behavioral manifestations of fear. Recently, a study reported that
32 IU intranasal OT attenuated the effect of aversive conditioning
of neutral faces [127], which was associated with reduced activity
in the caudal anterior cingulate cortex and the right medial tempo-
ral lobe. In addition, the authors reported a differential effect for
faces with averted vs. direct gaze in terms of a specific attenuating
effect of OT on the activity in the right amygdala and the right fusi-
form gyrus for direct gaze stimuli as compared to averted gaze
stimuli [127].

In another fMRI study, we found that 24 IU intranasal OT re-
duced amygdala responses to fearful, angry, and happy faces even
when the emotional content of the presented face was not evalu-
ated explicitly. In addition, exploratory whole brain analysis re-
vealed modulatory effects in prefrontal and temporal areas, as
well as in the brainstem [43]. Interestingly, 32 IU intranasal OT also
reduced amygdala activation when participants received painful
stimulation themselves [139].

In conclusion, recent neuroimaging studies suggest a modula-
tory role of OT on amygdala responsiveness to unconditioned
and conditioned socially relevant stimuli. The attenuating effect
on amygdala activity in response to both positive and negative
stimuli might reflect reduced uncertainty about the predictive va-
lue of a social stimulus and thereby facilitate social approach
behavior.

3.2. Social cognition and social approach

Numerous animal studies have implicated OT and AVP in mat-
ing, pair-bonding, and adult–infant attachment [104]. It is well-
known that pair-bonding in prairie voles, for example, is regulated
by both OT and AVP [32], whereas maternal behavior in rats is
modulated only by OT [83]. Besides its modulating role in psycho-
social stress, OT is involved in the regulation of social approach
behavior, social affiliation, and attachment.

An increasing number of experimental studies have begun to
gain insights into how OT modulates social approach behavior,
affiliation, and the associated cognitive processes in humans. To
date, these studies have used paradigms examining trusting behav-
ior, the processing of facial emotions and memory for socially rel-
evant information.

Trust in other people is a prerequisite of social affiliation and
social approach in humans. Using a trust game, a behavioral study
showed that 24 IU intranasal OT substantially increased trust
among humans. In particular, 45% of the participants in the OT
group showed the maximal trust level compared to only 21% in
the placebo group. Importantly, OT did not increase the readiness
to bear risks in general but rather specifically increased the indi-
vidual’s willingness to accept social risks within social interactions
[93]. In a subsequent study, we recently examined the effect of OT
on the neural circuitry underlying trusting behavior using fMRI. In
a modified trust game, the participants’ initial trusting behavior
was betrayed. The results indicate that 24 IU intranasal OT in-
creases the tolerance to the betrayal of trust compared to placebo.
This difference in trust adaptation was associated with the attenu-
ation of activity in areas mediating emotional processing (amyg-
Please cite this article in press as: M. Heinrichs et al., Oxytocin, vasopressin, a
j.yfrne.2009.05.005
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dala, midbrain regions) and the behavioral adaptation to
feedback (dorsal striatum) in subjects receiving OT [14].

Another behavioral study from our laboratory examined the
effects of OT on the ability to infer the mental state of another indi-
vidual from facial cues [44]. In this study, participants were given a
set of pictures showing the eye region of facial expressions, and
were asked to infer the mental state of the depicted person. A sin-
gle dose of 24 IU OT administered intranasally enhanced perfor-
mance in this test compared to placebo. Thus, OT improved the
ability to infer the mental state of others. A recent study by Gua-
stella and colleagues reported an increased number and duration
of gazes toward the eye region of emotionally neutral human faces
following intranasal OT administration (24 IU) as compared to pla-
cebo [61], indicating a key role of OT in facial processing and inter-
personal communication in humans. However, enhanced attention
for negative social cues (schematic angry faces) was not confirmed
in a recent study [59].

Another study examining the possible differential effects of OT
(24 IU) on the processing of positive compared to negative facial
expressions reported slowed reaction times during facial fear rec-
ognition and reduced misclassifications of positive facial expres-
sions as negative ones [37]. Regarding memory, intranasal OT
(24 IU) selectively modulated implicit memory depending on the
social relevance (reproduction-related vs. neutral) of semantic
word stimuli [71]. A recent study showed that a post-learning dose
of 20 IU intranasal OT enhanced immediate (30 min) and delayed
(24 h) recognition for face identity. Although there was no effect
of OT on the memory for face-facial expression associations, face
identity memory was only affected for faces with angry or neutral
expressions but not for faces with happy expressions [136]. In con-
trast, Guastella and colleagues showed that intranasal OT (24 IU)
given before learning enhances the memory for happy faces com-
pared to angry and neutral faces [62]. Importantly, another study
from our laboratory demonstrated that intranasal OT (24 IU) spe-
cifically improves recognition memory for faces, but not for non-
social stimuli, which suggests an immediate and selective effect
of the peptide strengthening neuronal systems of social memory
[134]. Notably, in an initial double-blind, placebo-controlled with-
in-subject design on the effects of OT on attachment, we were re-
cently able to show that a single intranasal administration of 24 IU
OT increases the subjective experience of attachment security (as-
sessed with an adult attachment projective picture test) in male
students classified with an insecure attachment pattern [20]. As se-
cure attachment is associated with lower stress reactivity and a
better ability to socially interact [40], and mediates the implica-
tions of early trauma, namely on psychopathology [128], the neu-
roendocrine mechanisms of attachment may have direct clinical
implications for several mental and developmental disorders (see
clinical perspectives).

Finally, there are a few correlational studies which suggest an
association between OT levels and different kinds of social interac-
tions. The first study reported a positive correlation of OT with self-
reported bonding to own parents and an inverse correlation with
depressive symptoms in young adults [56]. Another study reported
that women which showed an increase of OT from early to late
pregnancy self-reported maternal–fetal bonding to their unborn
child [100]. Two further studies showed that higher plasma levels
of OT are associated with trustworthy behavior [166,167].
Although these studies are not conclusive, they do concur with ani-
mal studies and point to the role of OT in the modulation of proso-
cial behavior.

To summarize, there is accumulating evidence that in humans,
OT modulates social perception, social cognition, and social behav-
ior, thereby promoting social approach and affiliation. Besides the
stress-reducing and anxiolytic effects, OT modulates social cogni-
tive functions such as trust, emotion recognition and social mem-
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/
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ory. Recent functional imaging studies support the idea that the
central nervous effects of exogenously administered OT are at least
in part mediated by a modulation of amygdala activity and associ-
ated cortical areas. Reduced emotional arousal during social
encounters might also promote social approach and therefore con-
tribute to the positive effects of OT on trust and social cognition.
The detailed mechanisms will need to be investigated in future re-
search, given the widespread distribution of OT receptors in the
brain [94] and the distribution of the neural network underlying
social cognition and emotion [1].

4. Arginine vasopressin and human social behavior

Whereas OT plays a key role both in prosocial behavior and in
the central nervous control of stress and anxiety, AVP has primarily
been implicated in male-typical social behaviors, including aggres-
sion and pair-bond formation, and in stress-responsiveness [55].
Although most of the studies conducted thus far on human social
behavior have focused on OT, few studies on AVP suggest behav-
ioral effects similar to those found in animal research.

Coccaro and colleagues [33] examined the relationship between
cerebrospinal fluid (CSF) AVP and indices of aggression in person-
ality-disordered subjects. The authors found a positive correlation
between levels of CSF AVP and life histories of general aggression
and aggression against other persons, suggesting an enhancing ef-
fect of central AVP in individuals with impulsive aggressive
behavior.

Two recent studies examined the effect of intranasal AVP
administration on human facial responses related to social com-
munication. In a first study, Thompson and colleagues [144] exam-
ined the effects of 20 IU intranasal AVP on cognitive, autonomic,
and somatic responses to emotionally expressive facial stimuli in
healthy male students using a placebo-controlled, double-blind de-
sign. Whereas AVP did not affect attention toward, or autonomic
arousal in response to, emotional facial expressions with different
valence (neutral, happy, and angry), the authors did observe selec-
tive enhancements of the corrugator supercilii electromyogram
(EMG) responses evoked by emotionally neutral facial expressions.
Interestingly, subjects of the AVP group yielded magnitudes in re-
sponse to neutral facial expressions that were similar to the mag-
nitudes of placebo subjects in response to angry facial expressions
[144]. In view to the crucial role of this muscle group for species-
specific agonistic social communication [86], these results suggest
that AVP may influence aggression by biasing individuals to re-
spond to emotionally ambiguous social stimuli as if they were
threatening or aggressive.

In a further study focusing on possible sex-specific influences of
AVP on human social communication, men and women received
20 IU intranasal AVP or placebo, and their facial EMG, heart rate,
and skin conductance responses to pictures of same-sex models
posing various facial expressions of emotion were tested [145].
In addition, subjects rated the friendliness of the faces. In men,
AVP stimulated agonistic facial motor patterns in response to the
faces of unfamiliar men. Interestingly, AVP also decreased percep-
tions of the friendliness of these faces. In women, by contrast, AVP
stimulated affiliative facial motor patterns in response to unfamil-
iar female faces and increased perceptions of friendliness of these
faces. Notably, AVP also affected autonomic responses to threaten-
ing faces and increased anxiety.

Recently, genetic studies found a contribution of a vasopressin
receptor subtype (Avpr-1a) in social behavior. The length of the
Avpr-1a RS3 promotor region was associated with altruistic behav-
ior. The amount of money allocated to an anonymous partner in an
economic game (dictator game) was higher for participants with
long Avpr-1a RS3 repeats compared to short repeats [92]. Several
Please cite this article in press as: M. Heinrichs et al., Oxytocin, vasopressin, a
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studies have previously shown an association between the AVPR-
1a receptor gene and autism [90,143,156], as well as partner pref-
erence in the male prairie vole [165]. Interestingly, the association
between the AVPR-1a and pair-bonding has also been observed in
humans. The RS3 repeat polymorphism significantly predicted out-
come measures in the Partner Bonding Scale (PBS) in men, while
this association was not found for women. In addition one specific
allele (334) was important for quality of the marital relationship.
Carriers of the 334 allele reported lower marital quality and had
more often experienced marital crisis or threat of divorce during
the last year. Wives of 334 allele carriers reported lower marital
satisfaction [154]. These results shift the attention towards the
involvement of Avpr-1a polymorphisms in social disorders.

Altogether, central AVP seems to have similar influences on so-
cial communication processes in humans, as is the case in numer-
ous other vertebrates. Moreover, the effects of AVP appear to be
sex-specific, promoting agonistic and affiliative types of responses
toward same-sex faces in men and women, respectively. The Avpr-
1a gene seems to be associated with differences in altruistic or pro-
social behavior in men and women and with pair-bonding and
marital satisfaction in men.

5. Clinical perspectives

As social behavior in health is tightly regulated, and dysfunc-
tional alterations can result in a psychopathological state, OT and
AVP have been considered to play an important role in the devel-
opment of a variety of mental disorders. Aside from social anxiety
disorder, social deficits are associated with autism spectrum disor-
ders, obsessive-compulsive disorder, borderline personality disor-
der, depression, and other mental disorders. In the following, we
review studies that addressed the role of OT and AVP in these
disorders.

5.1. Autism spectrum disorder

Autism and Asperger Syndrome belong to a group of pervasive
developmental disorders termed autism spectrum disorders
(ASD). ASD are characterized by a specific pattern of abnormalities
in communication, impairments in social cognition, and repetitive
behaviors. Some social deficits in ASD mimic the behavior of ani-
mals that lack OT. Thus some authors have suggested that there
might be a link between ASD and OT/AVP [25,63,82,164].

Indeed, there is some evidence that patients with ASD show
blunted plasma levels of OT. A first study found lower plasma lev-
els in children with ASD and correlations between plasma OT levels
and social functioning [115]. Another study extended these results
by demonstrating enhanced OT precursor to OT ratios [57]. Numer-
ous animal studies have shown that both Avpr and Otr genes play
an important role in the regulation of social behavior [25,104]. The
idea that Otr and Avpr genes also play a role in autism has been
supported by some studies. Specifically, recent studies have
emphasized the 3p25 region containing the Otr gene as the most
promising linkage site for ASD [95,110,163]. An association be-
tween ASD and two single nucleotide polymorphisms (rs2254298
and rs53576) has been suggested by a study with Chinese Han
families [161]. These results were confirmed in part in a Caucasian
sample [85] and further extended in a family-based association
study [99] showing interactions with social cognitive skills. Fur-
thermore, there are studies suggesting that polymorphisms of
Avpr-1a gene are also associated with ASD [90,156,162]. A recent
study suggests that amygdala reactivity is associated with genetic
variations of the Avpr-1a, and thereby might represent a neural
mechanism mediating the genetic risk for ASD [113]. Finally, two
studies suggest that systemic infusions of OT reduce repetitive
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/
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behavior in ASD [77] and improve emotion recognition in ASD [76].
Although these studies used systemic infusions of OT, giving rise to
the above-mentioned concerns about the transmission of the pep-
tide to the brain, the results are consistent with the effects re-
ported after intranasal administration in healthy men [44].

To summarize, there is increasing evidence that both Otr and
Avpr gene might be involved in the development of ASD. Further-
more, a number of studies show that the availability of OT is asso-
ciated with socio-cognitive functioning in ASD. It should be noted
that there are also studies that link ASD to alterations of AVP and
related neuropeptides, such as apelin [19,116].

5.2. Social anxiety disorder

Social anxiety disorder (SAD), also known as social phobia, is
the most common anxiety disorder, and the third most common
psychiatric disorder after major depression and alcohol depen-
dence [89]. Altogether, it is only possible to successfully treat less
than 60% of all patients [65]. Important clues for understanding the
neural substrates of SAD have come from affective neuroscience,
which has utilized animal, lesion, and human brain imaging ap-
proaches. In particular, compared with healthy controls, patients
with SAD exhibit exaggerated amygdala reactivity to neutral faces
previously paired with an aversive stimulus [17].

As mentioned above, initial data from Kirsch and colleagues
[91] and Domes and colleagues [43] indicate that intranasal oxyto-
cin was found to suppress fear-related activation of the amygdala
in healthy subjects. As oxytocin in humans was also associated
with both an enhanced ability to interact socially [93] and a better
central nervous control of stress and anxiety in social interactions
[67], it is expected that the development of specific psychobiolog-
ical approaches combining effective psychological methods, such
as behavior therapy, with intranasal oxytocin administration con-
stitutes a primary challenge in interdisciplinary research on the
treatment of SAD [69]. Recent studies showed that higher social
anxiety symptom severity was associated with altered OT levels
in patients with SAD [75]. More importantly, a recent randomized,
double-blind, placebo-controlled trial combined 24 IU intranasal
oxytocin with a brief exposure therapy [60]. Patients administered
with oxytocin showed improved self-evaluations of appearance
and speech performance. However, these effects did not generalize
to improve overall treatment outcome from exposure therapy.

In sum, future research is needed to determine whether oxyto-
cin can enhance treatment outcomes for social anxiety disorder
when used with greater frequency and a wider variety of social
learning experiences.

5.3. Early trauma and associated disorders

Alterations in the OT/AVP system have been considered a possi-
ble factor in the pathogenesis in disturbed adult attachment
[20,24]. It has been put forward that early stress interferes with
the developing neuropeptide system and alters receptor binding
of OT and AVP, thereby promoting the development of severe
attachment disorders [23,28].

Borderline personality disorder (BPD) is associated with a
remarkably high prevalence of severe childhood trauma and ne-
glect and by a pervasive pattern of instability in affect and inter-
personal relationships, (auto-) aggressive behaviors [102] as well
as unresolved, preoccupied, and fearful types of attachment
[2101]. In particular, BPD has been associated with excessive so-
cio-affective vigilance and enhanced reactivity to emotional and
social stimuli [74]. Hypervigilance to emotionally laden social
stimuli is further confirmed by studies showing enhanced amyg-
dala reactivity to negative scenes [73] and to negative facial
expressions [114], and even to neutral faces [46]. Furthermore,
Please cite this article in press as: M. Heinrichs et al., Oxytocin, vasopressin, a
j.yfrne.2009.05.005
E
D

P
R

O
O

F

BPD patients have been described as hypersensitive to social sig-
nals, sometimes misinterpreting ambiguous subtle social cues in
terms of a negativity bias [153], particularly towards the percep-
tion of anger [42]. Thus, neuropeptides might play a significant role
in the development of the insecure attachment and the fundamen-
tal distrust in others that many BPD patients report. Although this
hypothesis has not been tested explicitly, initial studies suggest
that early childhood trauma and neglect are associated with dysre-
gulations of AVP and OT.

A naturalistic study by Fries and coworkers found an association
between reduced early physical and emotional contact and basal
levels of plasma AVP. Moreover, early neglect had no effect on ba-
sal levels of OT, but rather impaired the increase of peripheral OT
triggered by a mother–infant interaction [51]. A recent study
showed attenuated CSF levels of OT in women which reported
early childhood maltreatment. This effect seemed to be even more
pronounced for women reporting emotional abuse during their
early childhood [64]. In another study, Meinlschmidt and Heim
[112] showed that the suppression of cortisol following the admin-
istration of a single dose of 24 IU intranasal OT was attenuated in
healthy men with early parental separation in comparison with
healthy control subjects. Thus, early neglect seems to impair the
central regulation of peptide release and/or synthesis and might
contribute to the adverse consequences of early childhood mal-
treatment, including reduced stress resilience and higher preva-
lence for mental disorders.

5.4. Obsessive-compulsive disorder

Recurrent, intrusive thoughts and fears of danger or contamina-
tion, and compulsive behaviors (e.g., excessive hand-washing) or
cognitions for relieving anxiety are the most prominent symptoms
of obsessive-compulsive disorder (OCD). Given the mnemonic ef-
fects of OT and AVP reported by some studies mentioned above,
and the possible role of both peptides in self-grooming behavior
in animals [107,125], it has been suggested that OCD symptoms
might be associated with alterations in central OT and AVP (cf.
[96]). This idea stimulated several clinical studies on OT and AVP
in OCD, which produced mixed results.

Adult OCD patients showed elevated basal CSF levels of AVP and
increased secretion of AVP into the plasma in response to hyper-
tonic saline administration [5], which could not be confirmed for
basal CSF concentrations [97]. Developmental changes in AVP have
been suggested by another study, in which CSF AVP concentration
and the AVP/OT ratio were negatively correlated with obsessive–
compulsive disorder symptom severity in children [142].

Further studies found enhanced CSF levels of OT in children and
adolescents with OCD compared with other anxiety disorders and
healthy controls [142], and in adults with non-tic-related OCD
compared to tic-related OCD, Tourette syndrome and healthy con-
trols [97]. In addition, an association was reported between the
severity of compulsion and CSF OT in non-tic-related OCD [97].
Altemus and colleagues [4] were not able to confirm the finding
of enhanced OT levels in OCD.

Although an initial case study reported symptomatic improve-
ment in OCD patients treated with intranasal OT [10], subsequent
controlled studies were not able to confirm therapeutic effects of
systemic [30] or intranasal administration [36,47,48,135] of OT in
OCD. These negative results are not conclusive, as they might be
in part attributed to methodological shortcoming such as the com-
monly low statistical power due to insufficient sample sizes
[36,47,48,135], the short-term treatment [47,48,135], or low doses
of treatment [36,135].

Taken together, the findings on the role of OT and AVP in OCD
are inconsistent. Since OT influences social behavior in particular
by modulating emotional processing and social cognitive function-
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/
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ing, further research should primarily focus on the potential role of
OT and AVP on compulsive behavior and ruminative, obsessional
thoughts and fears in OCD.

5.5. Depression

To date, only a small number of studies have investigated the role
of OT and AVP in the development of affective disorders, in particular
in unipolar depression. One study reported blunted plasma OT levels
in depressed patients [50], whereas other studies did not confirm
these results using plasma [34,150] and CSF measures [130,131]. An-
other study reported a negative correlation between symptom sever-
ity of depression and anxiety and OT plasma levels in fibromyalgia
patients [8], which was confirmed in a recent study in patients with
major depression [137]. A recent correlational study found a positive
association between plasma OT levels and reward dependency, a sta-
ble trait that manifests itself in social attachment and the dependence
on the approval of others [16]. In postmortem studies, the numbers of
AVP- and OT-expressing neurons in the paraventricular nucleus of the
hypothalamus have been reported to be increased in patients with
unipolar depression [131]. Depression is accompanied by hyperactiv-
ity of corticotrophin releasing factor (CRF) in the paraventricular nu-
cleus. Together with other receptor genes, the Avpr-1a gene is
involved in the activation of CRF neurons. An increased expression
of the Avpr-1a gene was again found in postmortem tissue of de-
pressed patients [155]. Another study partially supported the hypoth-
esis of a reduced vasopressinergic activity in depression [138]. Finally,
a negative association between plasma AVP and daytime motor activ-
ity [152] and a positive correlation with memory functioning [151]
have been reported in depressed patients.

In sum, evidence for a role of OT and AVP in depression is too
inconsistent to draw stringent conclusions. Initial data suggest that
affective disorders may be related to excessive vasopressin func-
tion and consequently that a treatment with vasopressin receptor
antagonists may be an effective treatment [141]. It might also be
the case that some characteristics in depression (e.g., social with-
drawal) are associated with blunted OT, but this hypothesis clearly
needs further investigation.

5.6. Schizophrenia

Since Bujanow raised the question whether OT might have anti-
psychotic properties in 1974 [21], only a small number of studies
have been conducted to explore the role of OT and AVP in schizo-
phrenia. Initial studies suggested enhanced concentrations of OT
[15] and neurophysin II, the hypothalamic–pituitary carrier of OT
[98,105], in patients with schizophrenia compared to healthy con-
trols, whereas a follow-up study did not confirm these results [52].
In contrast, Goldman and colleagues showed that blunted OT levels
in schizophrenia were associated with low performance in a facial
affect rating task [53]. Another study investigating the effect of a
trust-related interaction on peripheral OT levels revealed that
schizophrenic patients lacked the interaction-induced increase in
peripheral OT observed in healthy controls [88]. Not only OT but also
AVP functioning was found to be abnormal based on the investiga-
tion of neurophysin immunoreactivity in different brain areas [108].

Several additional studies underline the role of AVP in the psy-
chopathology of schizophrenia. Goldman and colleagues measured
elevated plasma AVP levels in schizophrenic patients, who often
exhibit osmotic dysregulation like polydipsia and hyponatremia
and at the same time show the typical psychiatric symptoms and
social impairment [54]. Neuroleptic drugs (haloperidol and cloni-
dine) not only reduced psychiatric symptoms, but were also capa-
ble of normalizing AVP plasma levels [126,133]. On the other hand
phencyclidine, a drug that evokes severe schizophrenia like symp-
Please cite this article in press as: M. Heinrichs et al., Oxytocin, vasopressin, a
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toms that can last for days or weeks, alters vasopressin receptor
expression, distribution and binding in animals [118].

The empirical evidence of neuropeptidergic functioning in
schizophrenia is limited and controversial, although recent studies
in humans and animals suggest impairments of OT and AVP
metabolism in schizophrenia that might be related to impaired so-
cial cognitive functioning.

6. Conclusions

Based on the enormous advances in animal models of the role of
neuropeptides in social cognition and behavior, recent human stud-
ies suggest that the basic social effects of OT and AVP from animal re-
search may also be applicable to human social interaction. Although
the translation of behavioral and neurobiological findings from ani-
mal studies to humans generally bears the risk of drawing oversim-
plified parallels between rodents and humans, the initial findings are
encouraging in terms of providing a better understanding of the neu-
robiology and neurogenetics of human social behavior. Moreover,
these translational findings suggest that OT and AVP may play an
important role in the etiology and treatment of a number of clinical
disorders involving social deficits and disrupted attachment.

Taken together, the main findings in human research regarding
the role of OT can be summarized as follows:

(i) OT is associated with the regulation of the behavioral and
endocrine stress response, i.e., OT is released in response
to socially relevant challenges and attenuates endocrine
and autonomic responses to stress.

(ii) OT is released in response to positive social interactions,
such as social support or social proximity, thus possibly rep-
resenting a mediator for the well-known stress-protective
effects of social support.

(iii) The neural substrate for the anxiolytic effects of OT has been
suspected in limbic areas, in particular in the amygdala. Spe-
cifically, OT has been found to attenuate amygdala reactivity
to social stimuli and to reduce brainstem activity, which is
associated with autonomic arousal.

(iv) OT has been found to promote social cognition and the inter-
pretation of social signals, possibly representing an
enhanced readiness to show social approach behavior and
empathy.

(v) Finally, there is initial evidence that the central OT system is
altered in several mental disorders that are characterized by
severe social disturbances, such as ASD, OCD, personality
disorders, and following early trauma. There is preliminary
evidence suggesting that genetic alterations of neuropeptide
receptors and developmental challenges (e.g., early adverse
experience) interact in the etiology and development of
these disorders.

With regard to the role of AVP in human social behavior, initial
studies also suggest behavioral effects similar to those found in
animal research. Specifically, central AVP has been shown to influ-
ence social communication in a sex-specific manner, promoting
agonistic facial responses toward same-sex faces in men but affilia-
tive responses in women.

As OT has been shown to reduce social anxiety and increase so-
cial abilities in animal and human studies, the neuropeptide might
be a significant target for novel therapeutic approaches in several
mental disorders that are characterized by social interaction
pathology [68,109]. As for the anxiogenic and aggression-related
role of AVP, the development of selective V1a and V1b receptor
antagonists, as known from animal studies [49,58], is a promising
target for human neuropsychopharmacological research, in partic-
nd human social behavior, Front. Neuroendocrinol. (2009), doi:10.1016/
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Fig. 1. Integrative model of the interactions of oxytocin, social approach behavior, and social stress. Anxiety and stress encourage social approach behavior and stimulate
oxytocin release in healthy individuals. Different kinds of positive social interaction (e.g., physical contact) are associated with oxytocin release, and in turn, oxytocin
promotes social approach behavior. As oxytocin reduces hypothalamic–pituitary–adrenal axis responses and limbic reactivity (especially amygdala) to social stressors, the
neuropeptide plays an important role as an underlying neurobiological mechanism for the anxiolytic/stress-protective effects of positive social interaction. In mental and
developmental disorders that are associated with severe deficits in social interactions (e.g., autism, social anxiety disorder, and borderline personality disorder), novel
therapeutic approaches combining effective psychotherapy methods with oxytocin or oxytocin agonist administration offer the opportunity to develop a ‘psychobiological
therapy’. (Figure modified from Heinrichs and Domes [68], with permission from Elsevier).
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ular in the treatment of stress-related disorders and disorders with
interpersonal violence such as antisocial personality disorder [35].

There is initial evidence for the clinical benefit of an increase of
the availability of OT in the central nervous system by exogenous
administration of the neuropeptide or selective agonists (e.g., car-
betocin). For example, peripheral infusion of OT increased retention
of social cognition via enhanced emotional understanding of speech
intonation and decreased repetitive behaviors in autism [13]. Fur-
ther studies are needed to test the hypothesis that patients with
mental disorders associated with severe social deficits benefit from
a combination of psychotherapy and OT administration. In particu-
lar, intranasal OT treatment is expected to improve the readiness
to socially interact (e.g., in group therapy) and to facilitate more ac-
tive and successful engagement in confronting feared social situa-
tions outside of the sessions. Fig. 1 shows an integrative model of
the interactions of anxiety and stress, social approach behavior,
and the oxytocinergic system, which also integrates the novel ap-
proach of a ‘psychobiological therapy’ in psychopathological states.
The therapeutic potential of manipulating the oxytocinergic system
in the treatment of mental and developmental disorders with social
deficits (e.g., ASD, social anxiety disorder, and borderline personality
disorder) has to be further investigated in clinical trials in which dis-
order-specific cognitive-behavioral therapy programs are combined
with synergizing OT or OT agonist administration.
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